Skip to main content

Advertisement

Log in

Modeling Within-Host Evolution of HIV: Mutation, Competition and Strain Replacement

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Virus evolution during infection of a single individual is a well-known feature of disease progression in chronic viral diseases. However, the simplest models of virus competition for host resources show the existence of a single dominant strain that grows most rapidly during the initial period of infection and competitively excludes all other virus strains. Here, we examine the dynamics of strain replacement in a simple model that includes a convex trade-off between rapid virus reproduction and long-term host cell survival. Strains are structured according to their within-cell replication rate. Over the course of infection, we find a progression in the dominant strain from fast- to moderately-replicating virus strains featuring distinct jumps in the replication rate of the dominant strain over time. We completely analyze the model and provide estimates for the replication rate of the initial dominant strain and its successors. Our model lays the groundwork for more detailed models of HIV selection and mutation. We outline future directions and application of related models to other biological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizon, S., van Baalen, M., 2005. Emergence of a convex trade-off between transmission and virulence. Am. Nat. 165, E155–E167.

    Article  Google Scholar 

  • Anderson, R., May, R., 1983. Epidemiology and genetics in the coevolution of parasites and hosts. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 219, 281–13.

    Article  MATH  Google Scholar 

  • Arien, K.K., Troyer, R.M., Gali, Y., Colebunders, R.L., Arts, E.J., Vanham, G., 2005. Replicative fitness of historical and recent HIV-1 isolates suggests HIV-1 attenuation over time. AIDS 19, 1555–564.

    Article  Google Scholar 

  • Arien, K.K., Gali, Y., El-Abdellati, A., Heyndrickx, L., Janssens, W., Vanham, G., 2006. Replicative fitness of CCR5-using and CXCR4-using human immunodeficiency virus type 1 biological clones. Virology 347, 65–4.

    Article  Google Scholar 

  • Bartz, S.R., Emerman, M., 1999. Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/Caspase-8. J. Virol. 73, 1956–963.

    Google Scholar 

  • Bjorndal, A., Deng, H., Jansson, M., Fiore, J.R., Colognesi, C., Karlsson, A., Albert, J., Scarlatti, G., Littman, D.R., Fenyo, E.M., 1997. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol. 71, 7478–487.

    Google Scholar 

  • Blattner, W.A., Oursler, K.A., Cleghorn, F., Charurat, M., Sill, A., Bartholomew, C., Jack, N., O’Brien, T., Edwards, J., Tomaras, G., Weinhold, K., Greenberg, M., 2004. Rapid clearance of virus after acute HIV-1 infection: correlates of risk of AIDS. J. Infect. Dis. 189, 1793–801.

    Article  Google Scholar 

  • Bocharov, G., Ford, N.J., Edwards, J., Breinig, T., Wain-Hobson, S., Meyerhans, A., 2005. A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J. Gen. Virol. 86, 3109–118.

    Article  Google Scholar 

  • Brandt, C.R., 2005. The role of viral and host genes in corneal infection with herpes simplex virus type 1. Exp. Eye Res. 80, 607–21.

    Article  Google Scholar 

  • Bremermann, H.J., Pickering, J., 1983. A game-theoretical model of parasite virulence. J. Theor. Biol. 100, 411–26.

    Article  MathSciNet  Google Scholar 

  • Coombs, D., Gilchrist, M.A., Percus, J., Perelson, A.S., 2003. Optimal viral production. Bull. Math. Biol. 65, 1003–023.

    Article  Google Scholar 

  • De Jong, J.J., De Ronde, A., Keulen, W., Tersmette, M., Goudsmit, J., 1992. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J. Virol. 66, 6777–780.

    Google Scholar 

  • Dieckmann, U., 2002. Adaptive dynamics of pathogen-host interactions. In: Dieckmann, U., Metz, J.A.J., Sabelis, M.W., Sigmund, K. (Eds.), Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management, pp. 39–9. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dieckmann, U., 2004. A beginner’s guide to adaptive dynamics. In: Mathematical Modelling of Population Dynamics. Banach Center Publications, vol. 63, pp. 47–6. Institute of Mathematics, Polish Academy of Sciences, Warszawa.

    Google Scholar 

  • Dixit, N.M., Perelson, A.S., 2005. HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA 102, 8198–203.

    Article  Google Scholar 

  • Gilchrist, M.A., Coombs, D., Perelson, A.S., 2004. Optimizing within-host viral fitness: infected cell lifespan and virion production rate. J. Theor. Biol. 229, 281–88.

    Article  MathSciNet  Google Scholar 

  • Goudsmit, J., de Ronde, A., Ho, D.D., Perelson, A.S., 1996. Human immunodeficiency virus fitness in vivo: calculations based on a single zidovudine resistance mutation at codon 215 of reverse transcriptase. J. Virol. 70, 5662–664.

    Google Scholar 

  • Goudsmit, J., de Ronde, A., de Rooij, E., de Boer, R., 1997. Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J. Virol. 71, 4479–484.

    Google Scholar 

  • Hendry, A.P., Wenburg, J.K., Bentzen, P., Volk, E.C., Quinn, T.P., 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290, 516–18.

    Article  Google Scholar 

  • Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D., Serra, L., 2000. Rapid evolution of a geographical cline in size in an introduced fly. Science 287, 308–09.

    Article  Google Scholar 

  • Jensen, M.A., Li, F.-S., van t Wout, A.B., Nickle, D.C., Shriner, D., He, H.-X., McLaughlin, S., Shankarappa, R., Margolick, J.B., Mullins, J.I., 2003. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J. Virol. 77, 13376–3388.

    Article  Google Scholar 

  • Jetzt, A.E., Yu, H., Klarmann, G.J., Ron, Y., Preston, B.D., Dougherty, J.P., 2000. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 74, 1234–240.

    Article  Google Scholar 

  • Jung, A., Maier, R., Vartanian, J.P., Bocharov, G., Jung, V., Fischer, U., Meese, E., Wain-Hobson, S., Meyerhans, A., 2002. Multiply infected spleen cells in HIV patients. Nature 418, 144.

    Article  Google Scholar 

  • Kelly, J.K., Williamson, S., Orive, M.E., Smith, M., Holt, R.D., 2003. Linking dynamical and population genetic models of persistent viral infection. Am. Nat. 162, 14–8.

    Article  Google Scholar 

  • Lenski, R.E., May, R.M., 1994. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J. Theor. Biol. 169, 253–65.

    Article  Google Scholar 

  • Levin, S., Pimental, D., 1981. Selection of intermediate rates of increase in parasite host systems. Am. Nat. 117, 308–15.

    Article  Google Scholar 

  • Levy, D.N., Aldrovandi, G.M., Kutsch, O., Shaw, G.M., 2005. Dynamics of HIV-1 recombination in its natural target cells. Proc. Natl. Acad. Sci. USA 101, 4204–209.

    Article  Google Scholar 

  • Li, J., Zhou, Y., Ma, Z., Hyman, J.M., 2004. Epidemiological models for mutating pathogens. SIAM J. Appl. Math. 65, 1–3.

    Article  MATH  MathSciNet  Google Scholar 

  • Lipsitch, M., Nowak, M.A., 1995. The evolution of virulence in sexually transmitted HIV/AIDS. J. Theor. Biol. 174, 427–40.

    Article  Google Scholar 

  • Mansky, L.M., Temin, H.M., 1995. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087–094.

    Google Scholar 

  • Mhashilkar, A.M., Bagley, J., Chen, S.Y., Szilvay, A.M., Helland, D.G., Marasco, W.A., 1995. Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J. 14, 1542–551.

    Google Scholar 

  • Nowak, M., May, R., 2000. Virus Dynamics, 1st edn. Oxford University Press, New York.

    MATH  Google Scholar 

  • Perelson, A.S., Nelson, P.W., 1999. Mathematical models of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–4.

    Article  MATH  MathSciNet  Google Scholar 

  • Preston, B.D., Poiesz, B.J., Loeb, L.A., 1988. Fidelity of HIV-1 reverse transcriptase. Science 242, 1168–171.

    Article  Google Scholar 

  • Princiotta, M.F., Finzi, D., Qian, S.B., Gibbs, J., Schuchmann, S., Buttgereit, F., Bennink, J.R., Yewdell, J.W., 2003. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–54.

    Article  Google Scholar 

  • Quinones-Mateu, M.E., Ball, S.C., Marozsan, A.J., Torre, V.S., Albright, J.L., Vanham, G., van der Groen, G., Colebunders, R.L., Arts, E.J., 2000. A dual infection/competition assay shows a correlation between ex vivo HIV-1 fitness and disease progression. J. Virol. 74, 9222–233.

    Article  Google Scholar 

  • Rapatski, B.L., Suppe, F., Yorke, J.A., 2005. HIV epidemics driven by late disease stage transmission. J. Aids 38, 241–53.

    Google Scholar 

  • Regoes, R., Bonhoeffer, S., 2005. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol. 13, 269–77.

    Article  Google Scholar 

  • Ribeiro, R.M., Hazenberg, M.D., Perelson, A.S., Davenport, M.P., 2006. Naïve and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J. Virol. 80, 802–09.

    Article  Google Scholar 

  • Roberts, J., Bebenek, K., Kunkel, T., 1988. The accuracy of reverse transcriptase from HIV-1. Science 242, 1171–173.

    Article  Google Scholar 

  • Shankarappa, R., Margolick, J.B., Gange, S.J., Rodrigo, A.G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, C.R., Learn, G.H., He, X., Huang, X.-L., Mullins, J.I., 1999. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J. Virol. 73, 10489–0502.

    Google Scholar 

  • Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S., 2000. Modeling plasma virus concentrations during primary HIV infection. J. Theor. Biol. 203, 285–01.

    Article  Google Scholar 

  • Troyer, R.M., Collins, K.R., Abraha, A., Fraundorf, E., Moore, D.M., Krizan, R.W., Toossi, Z., Colebunders, R.L., Jensen, M.A., Mullins, J.I., Vanham, G., Arts, E.J., 2005. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J. Virol. 79, 9006–018.

    Article  Google Scholar 

  • van Opijnen, T., Boerlijst, M.C., Berkhout, B., 2006. Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80, 6678–685.

    Article  Google Scholar 

  • Westendorp, M.O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K., Krammer, P.H., 1995. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497–00.

    Article  Google Scholar 

  • Wu, H.L., Huang, Y.X., Dykes, C., Liu, D.C., Ma, J.M., Perelson, A.S., Demeter, L.M., 2006. Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay. J. Virol. 80, 2380–389.

    Article  Google Scholar 

  • Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F., Hairston, N.G., Jr., 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303–06.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coombs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, C.L., Gilchrist, M.A. & Coombs, D. Modeling Within-Host Evolution of HIV: Mutation, Competition and Strain Replacement. Bull. Math. Biol. 69, 2361–2385 (2007). https://doi.org/10.1007/s11538-007-9223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9223-z

Keywords

Navigation