Skip to main content
Log in

Single-Occupancy Binding in Simple Bounded and Unbounded Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The number of substrate molecules that can bind to the active site of an enzyme at one time is constrained. This paper develops boundary conditions that correspond to the constraint of single-occupancy binding. Two simple models of substrate molecules diffusing to a single-occupancy site are considered. In the interval model, a fixed number of substrate molecules diffuse in a bounded domain. In the spherical model, a varying number of molecules diffuse in a domain with boundary conditions that model contact with a reservoir containing a large number of substrate molecules. When the diffusive time scale is much shorter than the time scale for entering the single-occupancy site, the dynamics of binding are accurately described by simple approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon, N., Hopfield, J.J., 1983. Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: intramolecular processes with slow conformational changes. J. Chem. Phys. 78(11), 6947–6959.

    Article  Google Scholar 

  • Bernèche, S., Roux, B., 2003. A microscopic view of conduction through the Streptomyces lividans K + channel. Proc. Natl. Acad. Sci. USA 100, 8644–8648.

    Article  Google Scholar 

  • Doering, C.R., 2000. Effect of boundary condition fluctuations on Smoluchowski reaction rates. In: Freund, J.A., Pöstel, T. (Eds.), Stochastic Processes in Physics Chemistry and Biology, pp. 316–326. Springer, Berlin.

    Google Scholar 

  • Elston, T.C., Doering, C.R., 1996. Numerical and analytical studies of nonequilibrium fluctuation-induced transport processes. J. Stat. Phys. 83, 359–383.

    Article  Google Scholar 

  • Gardiner, C.W., 1983. Handbook of Stochastic Methods. Springer, Berlin.

    MATH  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulations of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Im, W., Seefeld, S., Roux, B., 2000. A Grand Canonical Monte Carlo Brownian dynamics algorithm for simulating ion channels. Biophys. J. 79, 788–801.

    Google Scholar 

  • Kirchhoff, H., Horstmann, S., Weis, E., 2000. Control of photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta 1459, 148–168.

    Article  Google Scholar 

  • Kramers, H.A., 1940. Brownian motion in a field of force. Physica 7, 284–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Levitt, D.G., 1986. Interpretation of biological ion channel flux data: reaction rate versus continuum theory. Annu. Rev. Biophys. Biophys. Chem. 15, 29–57.

    Article  Google Scholar 

  • Liggett, T.M., 1985. Interacting Particle Systems. Springer, New York.

    MATH  Google Scholar 

  • Lin, J.-C., Doering, C.R., ben-Avraham, D., 1990. Joint density closure schemes for a diffusion-limited reaction. Chem. Phys. 146, 355–371.

    Article  Google Scholar 

  • McGill, P., Schumaker, M.F., 1996. Boundary conditions for single-ion diffusion. Biophys. J. 71, 1723–1742.

    Google Scholar 

  • Nadler, B., Naeh, T., Schuss, Z., 2001. The stationary arrival process of independent diffusers from a continuum to an absorbing boundary is Poissonian. SIAM J. Appl. Math. 62(2), 433–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Nadler, B., Naeh, T., Schuss, Z., 2003. Connecting a discrete ionic simulation to a continuum. SIAM J. Appl. Math. 63(3), 850–873.

    Article  MATH  MathSciNet  Google Scholar 

  • Omoto, C.K., Johnson, K.A., 1986. Activation of the dynein adenosinetriphosphatase by microtubules. Biochemisty 25, 419–427.

    Article  Google Scholar 

  • Perko, L., 2001. Differential Equations and Dynamical Systems, 3rd edn., p. 245. Springer, Berlin.

    MATH  Google Scholar 

  • Risken, H., 1989. The Fokker–Planck Equation. Springer, Berlin.

    MATH  Google Scholar 

  • Schumaker, M.F., 2002. Boundary conditions and trajectories of diffusion processes. J. Chem. Phys. 116(6), 2469–2473.

    Article  Google Scholar 

  • Schumaker, M.F., Kentler, C.J., 1996. Far field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance. Biophys. J. 74, 2235–2248.

    Google Scholar 

  • Schumaker, M.F., Watkins, D.S., 2004. A framework model based on the Smoluchowski equation in two reaction coordinates. J. Chem. Phys. 121, 6134–6144.

    Article  Google Scholar 

  • Song, Y., Zhang, Y., Shen, T., Bajaj, C.G., McCammon, J.A., Baker, N.A., 2004. Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys. J. 86, 2017–2029.

    Article  Google Scholar 

  • Wang, H., Peskin, C.S., Elston, T.C., 2003. A robust numerical algorithm for studying biomolecular transport processes. J. Theor. Biol. 221, 491–511.

    Article  MathSciNet  Google Scholar 

  • Xing, J., Wang, H., Oster, G., 2005. From continuum Fokker–Planck models to discrete kinetic models. Biophys. J. 89, 1551–1563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Schumaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumaker, M.F. Single-Occupancy Binding in Simple Bounded and Unbounded Systems. Bull. Math. Biol. 69, 1979–2003 (2007). https://doi.org/10.1007/s11538-007-9201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9201-5

Keywords

Navigation