Skip to main content
Log in

Biomechanical Modelling of Colorectal Crypt Budding and Fission

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper presents a biomechanical model for the small pits, called crypts, that line the colon. A continuum approach is adopted, with the crypt epithelium modelled as a growing beam attached to the underlying lamina by cell bonds, which generate tension within the layer. These cell attachments are assumed to be viscoelastic thus allowing for cell progression along the crypt. It is shown that any combination of: an increase in net proliferation (i.e. cell production minus apoptosis), an enlargement of the proliferative compartment, an increase in the strength of the cellular attachment to the underlying lamina, or a change in the rate of cell growth or cell bonding may generate buckling of the tissue. These changes can all be generated by an activating mutation of the Wnt cascade, which is generally accepted to be the first genetic change in colorectal cancer, with subsequent deformation, budding, and crypt fission an observed feature of the adenomatous crypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosi, D., Mollica, F., 2002. On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316.

    Article  MathSciNet  Google Scholar 

  • Araki, K., Ogata, T., Kobayashi, M., Yatani, R., 1995. A morphological study on the histogenesis of human colorectal hyperplastic polyps. Gastroenterology 109, 1468–1474.

    Article  Google Scholar 

  • Bach, S.P., Renehan, A.G., Potten, C.S., 2000. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21, 469–476.

    Article  Google Scholar 

  • Bender, C.M., Orszag, S.A., 1999. Advanced Mathematical Methods for Scientists and Engineers. Springer, New York.

    MATH  Google Scholar 

  • Brittan, M., Wright, N.A., 2004. Stem cell in gastrointestinal structure and neoplastic development. Gut 53, 899–910.

    Article  Google Scholar 

  • Brush, D.O., Almroth, B.O., 1975. Buckling of Bars, Plates, and Shells. McGraw–Hill, New York.

    MATH  Google Scholar 

  • Cummings, F.W., 1990. A model of morphogenetic pattern formation. J. Theor. Biol. 144, 547–566.

    MathSciNet  Google Scholar 

  • Davidson, L.A., Koehl, M.A.R., Keller, R., Oster, G.F., 1995. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018.

    Google Scholar 

  • Drasdo, D., Loeffler, M., 2001. Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development. Nonlinear Anal. 47, 245–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Fearon, E.R., Vogelstein, B., 1990. A genetic model for colorectal tumorigenesis. Cell 61, 759–767.

    Article  Google Scholar 

  • Fodde, R., 2003. The multiple functions of tumour suppressors: it’s all in APC. Nature Cell Biol. 5, 190–192.

    Article  Google Scholar 

  • Greaves, L.C., Preston, S.L., Tadrous, P.J., Taylor, R.W., Barron, M.J., Oukrif, D., Leedham, S.J., Deheragoda, M., Sasieni, P., Novelli, M.R., Jankowski, J.A.Z., Turnbull, D.M., Wright, N.A., McDonald, S.A.C., 2006. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl. Acad. Sci. USA 103, 714–719.

    Article  Google Scholar 

  • Hunt, G.W., Bolt, H.M., Thompson, J.M.T., 1989. Structural localization phenomena and the dynamical phase-space analogy. Proc. Roy. Soc. Lond. A 425, 245–267.

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, R., Davidson, L.A., Shook, D.R., 2003. How we are shaped: The biomechanics of gastrulation. Differentiation 71, 171–205.

    Article  Google Scholar 

  • Lubarda, V.A., Hoger, A., 2002. On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664.

    Article  MATH  Google Scholar 

  • Marshman, E., Booth, C., Potten, C.S., 2002. The intestinal epithelial stem cell. BioEssays 24, 91–98.

    Article  Google Scholar 

  • Nelson, W.J., Nusse, R., 2004. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487.

    Article  Google Scholar 

  • Odell, G.M., Oster, G., Alberch, P., Burnside, B., 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85, 446–462.

    Article  Google Scholar 

  • Preston, S.L., Wong, W.-M., Chan, A.O.-O., Poulsom, R., Jeffery, R., Goodlad, R.A., Mandir, N., Elia, G., Novelli, M., Bodmer, W.F., Tomlinson, I.P., Wright, N.A., 2003. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res. 63, 3819–3825.

    Google Scholar 

  • Renehan, A.G., O’Dwyer, S.T., Haboubi, N.J., Potten, C.S., 2002. Early cellular events in colorectal carcinogenesis. Color. Dis. 4, 76–89.

    Article  Google Scholar 

  • Reya, T., Clevers, H., 2005. Wnt signalling in stem cells and cancer. Nature 434, 843–850.

    Article  Google Scholar 

  • Roncucci, L., Pedroni, M., Vaccina, F., Benatti, P., Marzona, L., DePol, A., 2000. Aberrant crypt foci in colorectal carcinogenesis. Cell and crypt dynamics. Cell Prolif. 33, 1–18.

    Article  Google Scholar 

  • Samsom, O.J., Reed, K.R., Hayes, A.J., Ireland, H., Brinkmann, H., Newton, I.P., Batlle, E., Simon-Assmann, P., Clevers, H., Nathke, I.S., Clarke, A.R., Winton, D.J., 2004. Loss of APC in vivo immediately perturbs Wnt signalling, differentiation and migration. Genes Dev. 18, 1385–1390.

    Article  Google Scholar 

  • Shih, L.-M., Wang, T.-L., Traverso, G., Romans, K., Hamilton, S.R., Ben-Sasson, S., Kinzler, K.W., Vogelstein, B., 2001. Top-down morphogenesis of colorectal tumours. Proc. Natl. Acad. Sci. USA 98, 2640–2645.

    Article  Google Scholar 

  • Timoshenko, S., Lessells, J.M., 1928. Applied Elasticity. Constable and Co., London.

    Google Scholar 

  • Trefethen, L.N., 2000. Spectral Methods in Matlab. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Wong, W.-M., Mandir, N., Goodlad, R.A., Wong, B.C.Y., Garcia, S.B., Lam, S.-K., Wright, N.A., 2002. Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission. Gut 50, 212–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina M. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, C.M., Chapman, S.J. Biomechanical Modelling of Colorectal Crypt Budding and Fission. Bull. Math. Biol. 69, 1927–1942 (2007). https://doi.org/10.1007/s11538-007-9199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9199-8

Keywords

Navigation