Skip to main content
Log in

Emergent Features Due to Grid-Cell Biology: Synchronisation in Biophysical Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Modelling studies of upper ocean phenomena, such as that of the spatial and temporal patchiness in plankton distributions, typically employ coupled biophysical models, with biology in each grid-cell represented by a plankton ecosystem model. It has not generally been considered what impact the choice of grid-cell ecosystem model, from the many developed in the literature, might have upon the results of such a study. We use the methods of synchronisation theory, which is concerned with ensembles of interacting oscillators, to address this question, considering the simplest possible case of a chain of identically represented interacting plankton grid-cells. It is shown that the ability of the system to exhibit stably homogeneous (fully synchronised) dynamics depends crucially upon the choice of biological model and number of grid-cells, with dynamics changing dramatically at a threshold strength of mixing between grid-cells. Consequently, for modelling studies of the ocean the resolution chosen, and therefore number of grid-cells used, could drastically alter the emergent features of the model. It is shown that chaotic ecosystem dynamics, in particular, should be used with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abraham, E., 1998. The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580.

    Article  Google Scholar 

  • Bainbridge, R., 1956. The size, shape and density of marine phytoplankton concentrations. Biol. Rev. 32, 91–115.

    Google Scholar 

  • Belykh, I., Belykh, V., Nevidin, K., Hasler, M., 2003. Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13(1), 165–178.

    Google Scholar 

  • Blasius, B., Stone, L., 2000. Nonlinearity and the Moran effect. Nature 406, 846–847.

    Google Scholar 

  • Caswell, H., Neubert, M.G., 1998. Chaos and closure terms in plankton food chain models. J. Plankton Res. 20(9), 1837–1845.

    Google Scholar 

  • Edwards, A.M., 2001. Adding detritus to a nutrient–phytoplankton–zooplankton model: A dynamical systems approach. J. Plankton Res. 23(4), 389–413.

    Article  Google Scholar 

  • Edwards, A.M., Brindley, J., 1996. Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11(4), 347–370.

    Google Scholar 

  • Edwards, A.M., Brindley, J., 1999. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 61, 303–339.

    Google Scholar 

  • Elton, C., Nicholson, M., 1942. The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol. 11(2), 215–244.

    Google Scholar 

  • Fujisaka, H., Yamada, T., 1983. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–48.

    Google Scholar 

  • Fussman, G.F., Ellner, S.P., Shertzer, K.W., Hairston, N.G. Jr., 2000. Crossing the Hopf bifurcation in a live predator–prey system. Science 290(5495), 1358–1360.

    Article  Google Scholar 

  • Grenfall, B.T., Wilson, K., Finkenstädt, B.F., Coulson, T.N., Murray, S., Albon, S.D., Pemberton, J.M., Clutton-Brock, T.H., Crawley, M.J., 1998. Noise and determinism in synchronised sheep dynamics. Nature 394, 673–677.

    Google Scholar 

  • Gross, T., Ebenhoh, W., Feudel, U., 2006. Long food chains are in general chaotic. OIKOS 109(1), 135–144.

    Google Scholar 

  • Hastings, A., Powell, T., 1991. Chaos in a three-species food chain. Ecology 72, 896–903.

    Google Scholar 

  • Hillary, R.M., Bees, M.A., 2004. Plankton lattices and the role of chaos in plankton patchiness. Phys. Rev. E 69(031913).

  • Lalli, C.M., Parsons, T.R., 1997. Biological Oceanography: An Introduction. Butterworth-Heinemann, The Open University.

  • Levy, M., Klein, P., 2004. Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability? Proc. R. Soc. Lond. A 460, 1673–1687.

    Google Scholar 

  • Martin, A.P., 2003. Phytoplankton patchiness: The role of lateral stirring and mixing. Prog. Oceanogr. 57, 125–174.

    Google Scholar 

  • Martin, A.P., Richards, K.J., 2002. Patchy productivity in the open ocean. Global Biogeochem. Cycles 16(2), 1025–1034.

    Google Scholar 

  • Okubo, A., 1971. Oceanic diffusion diagrams. Deep-Sea Res. 18, 789–802.

    Google Scholar 

  • Pikovsky, A., Michael, R., Kurths, J., 2001. Synchronisation: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, UK.

  • Popova, E.E., 1995. Non-universal sensitivity of a robust ecosystem model of the ocean upper mixed layer. Ocean Model. 109, 2–5.

    Google Scholar 

  • Popova, E.E., Lozano, C.J., Srokosz, M.A., Fasham, M.J.R., Haley, P.J., Robinson, A.R., 2002. Coupled 3D physical and biological modelling of the mesoscale variability observed in North-East Atlantic in spring 1997: Biological processes. Deep-Sea Res. I 49, 1741–1768.

    Google Scholar 

  • Slater, R.D., 1993. Some parametric and structural simulations with a three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. In: Evans, G.T., Fasham, M.J.R. (Eds.), Towards a Model of Ocean Biogeochemical Processes, vol. 10. NATO. Springer-Verlag, Berlin.

  • Smith, C.L., Richards, K.J., Fasham, M.J.R., 1996. The impact of mesocale eddies on plankton dynamics in the upper ocean. Deep-Sea Res. I 43, 1807–1832.

    Google Scholar 

  • Srokosz, M.A., Martin, A.P., Fasham, M.J.R., 2003. On the role of biological dynamics in plankton patchiness at the mesoscale: An example from the eastern North Atlantic ocean. J. Mar. Res. 61, 517–537.

    Google Scholar 

  • Steele, J.H., Henderson, E.W., 1981. A simple plankton model. Am. Nat. 344, 734–741.

    Google Scholar 

  • Strogatz, S., 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Perseus Books Group.

  • Totterdell, I.J., 1993. An annotated bibliography of marine biological models. In: Evans, G.T., Fasham, M.J.R. (Eds.), Towards a Model of Ocean Biogeochemical Processes, vol. 10. NATO. Springer-Verlag, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Guirey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guirey, E.J., Bees, M.A., Martin, A.P. et al. Emergent Features Due to Grid-Cell Biology: Synchronisation in Biophysical Models. Bull. Math. Biol. 69, 1401–1422 (2007). https://doi.org/10.1007/s11538-006-9180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9180-y

Keywords

Navigation