Skip to main content
Log in

Theoretical Population Dynamics Model of a Genetically Transmitted Disease: Sickle-Cell Anaemia

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We formulate a realistic demographic model that captures the pattern of inheritance of the S gene, which is responsible for the most common genetic defect, namely, sickle-cell anaemia (SCA), using general pair formations. The model equation is implicitly solved via the Laplace transform technique, while the existence of a unique solution is proved by applying the contraction mapping principle. One of the main results is the boundedness of the solution. A fundamental reason for the persistence of SCA is probably due to the role played by the selective advantage of the abnormal S gene over the normal haemoglobin A in tropical regions, and the fact that carriers are more fertile and survive longer (a property known as hybrid vigor), because they are essentially asymptomatic. We also discuss possible public health policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldelson, M., 1976. An Introduction to Epidemiology. Macmillan, London.

    Google Scholar 

  • Allison, A.C., 1963. Genetical Variation in Human Populations. Pergamon, Oxford.

    Google Scholar 

  • Bainov, D., Simeonov, P., 1992. Integral Inequalities and Applications. Kluwer Academic, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  • Barlett, M.S., 1960. Stochastic Population Models in Ecology and Epidemiology. Methuen/Wiley, New York/London.

    Google Scholar 

  • Caswell, H., 1989. Matrix Population Models. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Caswell, H., 2001. Matrix Population Models, Construction, Analysis and Interpretation. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Castillo-Chavez, C., 1990. Towards a unified theory of pair formation. In: Third Autumn Course on Mathematical Ecology, SMR. pp. 478–442.

  • Castillo-Chavez, C., Busenberg, S., 1991a. Pair formation in structured populations. In: Goldstein, J.A., Kappel, F., Schappacher, W. (Eds.), Differential Equations with Applications in Biology, Physics and Engineering. Lecture Notes in Pure and Applied Mathematics, vol. 133, pp. 47–65.

    MathSciNet  Google Scholar 

  • Castillo-Chavez, C., Busenberg, S., 1991b. On the solution of the two-sex problem. In: Busenberg, S., Martelli, M. (Eds.), Proceedings of the International Conference on Diff. Eqns. Appl. Biol. and Pop. Dynam. Lecture Notes in Biomathematics 92, 80–98, Springer-Verlag, Berlin-Heidelberg-New York.

  • Castillo-Chavez, C., Huang, W., 1995. The logistic equation revisited: The two-sex case Math. Biosci. 128, 299–316.

    Article  MATH  Google Scholar 

  • Castillo-Chavez, C., Huang, W., Li, J., 1996. On the existence of stable pair distributions. J. Math. Biol. 34, 413–441.

    MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C., Velasco-Hernandez, J.X., Fridman, S., 1994. Modeling contact structures in bioogy. In: Levin, S.A. (Ed.), Frontiers of Theoretical Biology. Lecture Notes in Biomathematics, vol. 100. Springer, Berlin.

    Google Scholar 

  • Castillo-Chavez, C., Yakubu, A.-A., Thieme, H., Martcheva, M., 2002. Non-linear mating models for population with discrete generations. In: Castillo-Chavez, C., van den Driessche, P., Kirscher, D., Yakubu, A.-A. (Eds.), Mathematical Approaches for Emerging and Re-Emerging Infectious Diseases: An Introduction, IMA, vol. 125. Springer, Berlin, pp. 251–268.

    Google Scholar 

  • Cavalli-Sforza, L.L., Bodner, W.F., 1971. The Genetics of Human Populations. Freeman, San Francisco.

    Google Scholar 

  • Charlesworth, B., 1980. Evolution in Age Structured Populations. Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

  • Chukwu, A.A., Tchuenche, J.M., 2005. Solution of a simple advection diffusion population model. Int. J. Ecol. Econ. Stat. 3(S05), 72–78.

    MATH  MathSciNet  Google Scholar 

  • Cushing, J.M., 1988. An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA.

    Google Scholar 

  • Dean, J., Schechter, A.N., 1978. Molecular and cellular base of therapeutic approaches. New Engl. J. Med 299(14), 752–762.

    Article  Google Scholar 

  • Diggs, L.W., 1980. Sickle cell centers of tomorrow. Part I: Regional information centers. South. Med. J. 73(2), 188–194.

    Google Scholar 

  • Edwards, R., Telfair, J., Cecil, H., Lenoci, J., 2004. Self- efficacy as a predictor of adult adjustment to sickle cell diseae: One-year outcomes. Retrieved September 4, 2005, from http://www.psychosomaticmedicine.org/cgi/content/full/63/5/850

  • Eldestein, S.T., 1986. The Sickle Cell: From Myths to Molecules. Howard University Press, Cambridge, MA.

    Google Scholar 

  • Ewens, W.J., 2004. Mathematical Population Genetics. I. Theoretical Introduction, 2nd ed. Springer, New York.

    MATH  Google Scholar 

  • Felsenstein, J, 2003. Theoretical Evolutionary Genetics. Available at http://evolution.gs.washington.edu/pgbook/pgbook/html

  • Fredrickson, A.G., 1971. A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models. Math. Biosci. 20, 117–120.

    Article  Google Scholar 

  • Gale, J.S., 1980. Population Genetics. Blackie and Sons, Glasgow.

  • Gary, L.E., 1977. In: Baer, A.S. (Ed.), The Sickle-Cell Controversy in Heredity and Society. Macmillan, London.

    Google Scholar 

  • Goodman, L.A., 1953. Population growth of the sexes. Biometrics 9, 213–225.

    Article  Google Scholar 

  • Hadeler, K.P., 1989. Pair formation in age-structured populations. Acta Appl. Math. 14, 91–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Hadeler, K.P., 1993. Pair formation with maturation period. J. Math. Biol. 32, 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Hadeler, K.P., Waldstatter, R., Wörz-Busekros, A., 1988. Models for pair formation in bisexual populations. J. Math. Biol. 26(6), 635–649.

    MATH  MathSciNet  Google Scholar 

  • Hartl, D.H., Clark, A.J., 1997. Principles of Population Genetics, 3rd ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hille, E., Phillips, R.S., 1957. Functional analysis and semigroups. Am. Math. Soc. Coll. Publ. 31, American Mathematical Society, Providence, Rhode Island, pp. 256–271.

  • Hoppensteadt, F.C., Peskin, C.S., 1992. Mathematics in Medicine and the Life Sciences, Texts in Applied Mathematics, vol. 10. Springer, Berlin.

    Google Scholar 

  • Hoskins, R.F., 1999. Delta Functions: Introduction to Generalized Functions. Horwood Series in Mathematics and Applications, Horwood, Chichester, UK.

    MATH  Google Scholar 

  • Hsia, D.Y., 1969. The detection of heterozygous carriers. Med. Clin. North Am. 53, 857–874.

    Google Scholar 

  • Kecton, W.T., 1972. Biological Science, 2nd ed. W.W. Norton, New York, pp. 229–235.

    Google Scholar 

  • Kimbir, A.R., 1995. A Mathematical Model of the Transmission Dynamics of Human Schistosomiasis. Ph.D. Thesis, Faculty of Science, University of Ibadan, Nigeria.

  • Kimura, M., Ohta, T., 1974. Probability of gene fixation in an expanding finite population. Proc. Natl. Acad. Sci. U.S.A. 71(9), 3377–3379.

    Article  MATH  Google Scholar 

  • King, R.C., 1965. Genetics. Oxford University Press, New York, pp. 237–240.

    Google Scholar 

  • Konotey-Ahulu, F.I.D., 1974. The sickle-cell disease: Clinical manifestations including the “sickle crisis”. Arch. Int. Med. 133, 611–619.

    Article  Google Scholar 

  • Kooi, B.W., Kelpin, F.D.L., 2003. Physiologically structured population dynamics, a modelling perspective. Comments Theor. Biol. 8(2/3), 125–168.

    Article  Google Scholar 

  • Kotila, T.R., Adeyemo, A.A., Abbiyesuku, F.M., Shokunbi, W.A., 2000. Betke's and elution methods in estimation of haemoglobin F in sickle-cell anaemia. East Afr. J. 77(3), 40–43.

    Google Scholar 

  • Kotila, T.R., Shokunbi, W.A., 2003. Haemoglobin F in healthy Nigerian adults. West Afr. J. Med. 22(2), 143–145.

    Google Scholar 

  • Light, W.A., 1990. An Introduction to Abstract Analysis. Chapman and Hall, London.

    MATH  Google Scholar 

  • Lorey, F.W., Arnopp, J., Cunningham, G.C., 1996. Distribution of hemoglobinopathy variants by ethnicity in a multi-ethnic state. Gen. Epidemiol. 13(5), 501–512.

    Article  Google Scholar 

  • Lubkin, S., Hsu Schmitz, S.-F., Castillo-Chavez, C., 1995. A framework for modelling inheritance of social traits. In: Arino, O., Axelrod, D.E., Kimmel, M. (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1, Theory of Epidemics, Wuerz Publishing Ltd., Canada. pp. 131–146.

  • Lutz, F., 2003. Lecture Notes. Retrieved August 31, 2005, from http://homepages.strath.ac.uk/dfs99109/BB211/HeteroAdvLect.html

  • MacDonald, A.S., 1999. Modelling the impact of genetics on insurance. North Am. Actuarial J. 3(1), 83–101.

    MATH  MathSciNet  Google Scholar 

  • MacDonald, A.S., Pitchard, D., 2000. A mathematical model of Alzheimer's disease and the APOE gene. ASTIN Bull. 30(1), 69–110.

    Article  MathSciNet  Google Scholar 

  • Malecot, G., 1969. The Mathematics of Heredity (Revised, edited and translated by Yermanos, D.M.). Freeman, San Francisco.

    Google Scholar 

  • Martcheva, M., Milner, F.A., 2001. The mathematics of sex and marriage, revisited. Math. Pop. Stud. 9(2), 123–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, K., 1973. Genetical Structure of Populations. Chapman and Hall, London.

    Google Scholar 

  • McFarland, D.D., 1972. Comparison of alternative marriage models. In: Greville, T.N.E. (Ed.), Population Dynamics. Academic Press, New York, pp. 89–106.

    Google Scholar 

  • Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68. Springer, Berlin.

    MATH  Google Scholar 

  • Mewoli, B., 1978. Dynamique de la population. In: Mewoli, B. (Ed.), Mathematical Modelling and Applications. Part 1: African Research Notes in Mathematical Sciences, pp. 20–27.

  • Milner, F.A., Babbiolo, G., 1992. Rapidly converging numerical algorithms for models of population dynamics. J. Math. Biol. 30, 733–753.

    Article  MATH  MathSciNet  Google Scholar 

  • Neel, J.V., 1949. The sickle-cell anaemia. Science 110, 65–66.

    Article  Google Scholar 

  • Nisbet, R.M., Gurney, W.S.C., 1986. The formulation of age-structure models. In: Hallam, T.G., Levin, S.A. (Eds.), Mathematical Ecology, An Introduction, Springer-Verlag, W. Germany, pp. 95–115.

  • Ohaeri, J.V., Shokunbi, W.A., Akinlade, K.S., Dare, L.O., 1995. The psychosocial problems of sickle-cell disease sufferers and their methods of coping. Soc. Sci. Med. 40(7), 955–960.

    Article  Google Scholar 

  • Pauling, L., Itano, H.A., Singer, S.J., Wells, I.C., 1949. Sickle-cell anaemia, a molecular disease. Science 110, 441–450.

    Article  Google Scholar 

  • Pitt, H.R., 1963. Integration Measure and Probability, University Monographs. Oliver and Boyd, London, UK.

    Google Scholar 

  • Platt, O.S., Brambilla, D.J., Rosse, W.F., Milner, P.F., Castro, O., Steinberg, M.H., Klug, P.P., 1994. Mortality in sickle-cell disease: Life expectancy and risk factors for early death. New Engl. J. Med. 330(23), 1939–1644.

    Article  Google Scholar 

  • Powars, D., Chan, L.S., Schroeder, W.A., 1990. The variable expression of sickle cell disease is genetically determined. Semin. Hematol. 27, 360–376.

    Google Scholar 

  • Pruss, J., Shappacher, W., 1994. Persistent age-distributions for pair-formation model. J. Math. Biol. 33, 17–33.

    Article  MathSciNet  Google Scholar 

  • Reed, W., Vichinsky, E.P., 1998. New considerations in the treatment of sickle-cell disease. Ann. Rev. Med 49, 461–474.

    Article  Google Scholar 

  • Rice, S.H., 2004. Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Rosen, K.H., 1983. Mathematical models for polygamous mating systems. Math. Model. 4(1), 27–40.

    Article  MATH  Google Scholar 

  • Rosen, R., 1993. On models and modeling. Appl. Math. Comput. 56, 359–372.

    Article  MATH  MathSciNet  Google Scholar 

  • Rubinov, S.I., 1972. Mathematical problems in the biological sciences. CBMS-NSF Regional Conference in Applied Mathematics 10, pp. 9–30.

  • Serjeant, G.R., 1994. The geography of sickle cell disease: Opportunities for understanding its diversity. Ann. Saudi Med. 14(3), 237–246.

    Google Scholar 

  • Serjeant, G.R., Serjeant, B.E., 2001. Sickle Cell Disease. Oxford University Press, Oxford.

    Google Scholar 

  • Sharpe, F.R., Lotka, A.J., 1911. Numerical bifurcation analysis of a tri-trophic food web with omnivory. Phil. Mag. 21, 435–438.

    Google Scholar 

  • Singer, K., Chenoff, A.I., Singer, L., 1951. Studies on abnormal haemoglobins. 1: Their demonstration in sickle-cell anaemia and other haematologic disorders by means of alkali denaturation. Blood 6, 413.

    Google Scholar 

  • Sinko, J.W., 1969. A new mathematical model for describing the age–size structure of a population of simple animals. Ph.D. Thesis, Department of Electrical Engineering, University of Rochester, New York.

  • Slobodkin, L.B., 1953. An algebra of population growth. Ecology 34(3), 513–519.

    Article  Google Scholar 

  • Smart, D.R., 1974. Fixed Point Theorems. Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

  • Sneddon, I.N., 1972. The Use of Integral Transforms. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Sowunmi, C.O.A., 1976. Female dominant age-dependent deterministic population dynamics. J. Math. Biol. 3(2), 9–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Sowunmi, C.O.A., 1988. Saturation processes. Maht. Comput. Model. 11, 250–252.

    Article  MathSciNet  Google Scholar 

  • Sowunmi, C.O.A., 1993. A model of heterosexual population dynamics with age structure and gestation period. J. Math. Anal. Appl. 172(2), 390–411.

    Article  MATH  MathSciNet  Google Scholar 

  • Sowunmi, C.O.A., 2000. Stability of steady state and boundedness of a 2-sex population model. Nonlinear Anal. 39, 693–709.

    Article  MathSciNet  Google Scholar 

  • Sowunmi, C.O.A., 2004. Time discrete 2-sex population model with gestation period. In: Mathematical Modelling of Population Dynamics. Banach Center Publications 63, 259–266.

    MathSciNet  Google Scholar 

  • Streifer, W., 1974. Realistic models in population ecology. In: MacFadyen, A. (Ed.), Advances in Ecological Research, vol. 8. Academic Press, London.

    Google Scholar 

  • Tchuenche, J.M., 2005e. Evolution Equation in a Population with an Additional Structure: A Simple Derivation, West Afr. J. Bioph. Biomath. 2, 1–7.

    Google Scholar 

  • Tchuenche, J.M., 2002. Mathematical population dynamics of a sickle-cell anaemia, a genetically transmitted disease. Ph.D. Thesis, Faculty of Sciences, University of Ibadan, Nigeria.

  • Tchuenche, J.M., 2005a. Realistic patterns of inheritance o sickle-cell anaemia gene. J. Biol. Syst. 13(1), 13–22.

    Article  MATH  Google Scholar 

  • Tchuenche, J.M., 2005b. Effects of the selective advantage of HbS over HbA in the transmission dynamics of sickle-cell anaemia. Adv. Complex Syst. 8(1), 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  • Tchuenche, J.M., 2005c. The effects of migration on the transmission dynamics of sickle cell anaemia. Mediterr. J. Math. 2(3), 357–365.

    Article  MATH  MathSciNet  Google Scholar 

  • Tchuenche, J.M., 2005d. An age-physiology dependent population dynamics model with polygamy. Folia Math. 12(2), (in press)

  • Tribe, M.A., Tallam, I., Eraut, M.R., 1978. Basic Biology Course. Unit 5: Aspect of Heredity, Book 12, Case Studies in Genetics. New York: Cambridge University Press, MA.

  • Tucker, S.L., Zimmerman, S.O., 1988. A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48(3), 549–591.

    Article  MATH  MathSciNet  Google Scholar 

  • Wallace, R.A., King, J.L., Saunders, G.P., 1986. Biology: The Science of Life. Scott, Foresman, Glenview, IL, pp. 772–778.

    Google Scholar 

  • Watson, E.J., 1981. Laplace Transforms and Applications. Von Nostrand Reinhold, New York.

    MATH  Google Scholar 

  • White, J.M., Lewis, S.M., 1973. Report on the interdisciplinary quantitation of haemoglobin A2 and F. J. Clin. Pathol. 26, 864–867.

    Article  Google Scholar 

  • Yu, M.S., Passekov, V.P., 1990. Fundamentals of evolutionary genetics. In: Mathematics and its Applications. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean M. Tchuenche.

Additional information

2000 MS Classification: 92D25 · 92D40 · 34C60 · 35F10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchuenche, J.M. Theoretical Population Dynamics Model of a Genetically Transmitted Disease: Sickle-Cell Anaemia. Bull. Math. Biol. 69, 699–730 (2007). https://doi.org/10.1007/s11538-006-9148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9148-y

Keywords

Navigation