Skip to main content
Log in

Modeling Vortex Swarming In Daphnia

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Based on experimental observations in Daphnia, we introduce an agent-based model for the motion of single and swarms of animals. Each agent is described by a stochastic equation that also considers the conditions for active biological motion. An environmental potential further reflects local conditions for Daphnia, such as attraction to light sources. This model is sufficient to describe the observed cycling behavior of single Daphnia. To simulate vortex swarming of many Daphnia, i.e. the collective rotation of the swarm in one direction, we extend the model by considering avoidance of collisions. Two different ansatzes to model such a behavior are developed and compared. By means of computer simulations of a multi-agent system we show that local avoidance—as a special form of asymmetric repulsion between animals—leads to the emergence of a vortex swarm. The transition from uncorrelated rotation of single agents to the vortex swarming as a function of the swarm size is investigated. Eventually, some evidence of avoidance behavior in Daphnia is provided by comparing experimental and simulation results for two animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Jacob, E., 2003. Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil. Trans. R. Soc. Lond. A 361, 1283–1312.

    Article  MathSciNet  Google Scholar 

  • Caraco, T.S., Martindale, S., Pulliam, H.R., 1980. Avian flocking in the presence of a predator. Nature 285, 400–401.

    Article  Google Scholar 

  • Couzin, I., Franks, N., 2003. Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. London Ser. B 270, 139–146.

    Google Scholar 

  • Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N.R., 2002. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11.

    Article  MathSciNet  Google Scholar 

  • Couzin, I.D., Krause, J., 2001. The social organisation of fish schools. Advances in Ethology 36(64).

  • Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A., 2005. Effective leadership and decision making in animal groups on the move. Nature 433, 513–516.

    Article  Google Scholar 

  • Czirok, A., Ben-Jacob, E., Cohen, I., Vicsek, T., 1996. Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54(2), 1791–1801.

    Article  Google Scholar 

  • Czirok, A., Vicsek, T., 2000. Collective behavior of interacting self-propelled particles. Physica A 281, 17–29.

    Article  Google Scholar 

  • Deutsch, A. (1999). Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24(1), 115–120.

    Article  Google Scholar 

  • Ebeling, W., Schweitzer, F., 2001. Swarms of Particle Agents with Harmonic Interactions. Theory in Biosciences 120(3–4), 207–224.

    Google Scholar 

  • Ebeling, W., Schweitzer, F., 2003. Self-Organization, Active Brownian Dynamics, and Biological Applications. Nova Acta Leopoldina NF 88(332), 169–188.

    MathSciNet  Google Scholar 

  • Ebeling, W., Schweitzer, F., Tilch, B., 1999. Active brownian particles with energy depots modelling animal mobility. BioSystems 49, 17–29.

    Article  Google Scholar 

  • Erdmann, U., E.W., Mikhailov, A.S., 2005. Noise-induced transition from translational to rotational motion of swarms. Phys. Rev. E 71(051904).

  • Erdmann, U., Ebeling, W., 2003. Collective motion of brownian particles with hydrodynamic interactions. Fluctuation Noise Lett. 3, L145–L154.

    Article  Google Scholar 

  • Erdmann, U., Ebeling, W., Schimansky-Geier, L., Schweitzer, F., 2000. Brownian particles far from equilibrium. Eur. Phys. J. B 15(1), 105–113.

    Article  Google Scholar 

  • Flierl, G., Grünbaum, D., Levin, S., Olson, D., 1999. From individuals to aggregations: the interplay between behavior and physics. J. Theoret. Biol. 196, 397–454.

    Article  Google Scholar 

  • Grégoire G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702.

    Article  Google Scholar 

  • Grégoire, G., Chaté, H., Tu, Y., 2001. Active and passive particles: Modeling beads in a bacterial bath. Phys. Rev. E 64, 011902.

    Article  Google Scholar 

  • Gries, T., Jöhnk, K., Fields, D., Strickler, J., 1999. Size and structure of ‘footprints’ produced by Daphnia: impact of animal size and density gradients. J. Plankton Res. 21, 509–523.

    Article  Google Scholar 

  • Grünbaum, D., Okubo, A., 1994. Modelling Social Animal Aggregation. In: Levin, S.A. (Ed.), Frontiers in Theoretical Biology. Springer, New York, vol. 100 of Lecture Notes in Biomathematics.

  • Hall, S.J., Wardle, C.S., MacLennan, D.N., 1986. Predator evasion in a fish school: test of a model of the fountain effect. Mar. Biol. 91, 143–148.

    Article  Google Scholar 

  • Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P., 1997. Active walker model for the formation of human and animal trail systems. Phys. Rev. E 56(3), 2527–2539.

    Article  Google Scholar 

  • Huth, A., Wissel, C., 1992. The simulation of the movement of fish schools. J. Theor. Biol. 156, 365–385.

    Article  Google Scholar 

  • Huth, A., Wissel, C., 1994. The simulation of fish schools in comparison with experimental data. Ecological Modelling 75–76, 135–146.

  • Jakobsen, P., Johnsen, G., 1987. Behavioral response of the water flea Daphnia pulex to a gradient in food concentration. Anim. Behav. 35, 1891–1895.

    Article  Google Scholar 

  • Jakobsen, P.J., Birkeland, K., Johnsen, G.H., 1994. Swarm location in zooplankton as an anti-predator defense mechanism. Anim. Behav. 47, 175–178.

    Article  Google Scholar 

  • Jensen, K., 2000. Gregariousness in Daphnia: significance of food distribution and predator evasion. University Bergen, Dep. of Zoology, Norway, Phd. Thesis.

  • Kleiven O., Larsson, P., Hobæk, 1996. Direct distributional response in Daphnia pulex to a predatorkairomone. J. Plankton Res. 18, 1341–1348.

  • Kunz, H., Hemelrijk, C.K., 2003. Artificial fish schools: collective effects of school size, body size, and body form. Artificial Life 9, 237–253.

    Article  Google Scholar 

  • Kvam, O., Kleiven, O., 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiol. 307, 177–184.

    Article  Google Scholar 

  • Larsson, P., 1997. Ideal free distribution in Daphnia? Are daphnids able to consider both the food patch quality and the position of competitors? Hydrobiologia 360, 143–152.

  • Larsson, P., Kleiven, O., 1995. Food search and swimming speed in Daphnia. In: Lenz, P.H., Hartline, D., Purcell, J., Macmillan, D. (Eds.), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, pp. 375–387.

  • Levine, H., Rappel, W.-J., Cohen, I., 2000. Self-Organization in Systems of Self-Propelled Particles. Phys. Rev. E 63, R017101.

    Article  Google Scholar 

  • Lobel, P.S., Randall, J.E., 1986. Swarming behavior of the hyperiid amphipod Anchylomera blossevilli. J. Plankton Res. 8, 253–262.

    Article  Google Scholar 

  • Mikhailov, A., Zanette, D.H., 1999. Noise-induced breakdown of coherent collective motion in swarms. Phys. Rev. E 60, 4571–4575.

    Article  Google Scholar 

  • Molnár, P., 1995. Modellierung und Simulation der Dynamik von Fussgängerströmen. Aachen: Shaker. ISBN: 3-8265-1191-3.

  • Øien, A.H., 2004. Daphnicle dynamics based on kinetic theory: an analogue-modelling of swarming and behaviour of Daphnia. Bull. Math. Biol. 66, 1–46.

    Article  MathSciNet  Google Scholar 

  • Okubo, A., Levin, S., 2002. Diffusion and Ecological Problems. New York: Springer.

    MATH  Google Scholar 

  • Ordemann, A., 2002. Vortex-Swarming of the Zooplankton Daphnia. Biol. Physicist 2(3), 5–10.

    Google Scholar 

  • Ordemann, A., Balazsi, G., Moss, F., 2003a. Motions of daphnia in a light field: random walks with a zooplankton. Nova Acta Leopoldina 88(332), 87–103.

    Google Scholar 

  • Ordemann, A., Balazsi, G., Moss, F., 2003b. Pattern formation and stochastic motions of the zooplankton Daphnia in light fields. Physica A 325, 260–266.

    Article  Google Scholar 

  • Ordemann, A., Garcia, R., Moss, F., 2004. Avoidance maneuvers observed in Daphnia. (unpublished).

  • Parrish, J., Edelstein-Keshet, L., 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101.

    Article  Google Scholar 

  • Parrish, J.K., Hamner, W. (eds.), 1997. Animal Groups in Three Dimensions. Cambridge University Press, Cambridge.

  • Parrish, J.K., Viscido, S.V., Grünbaum, D., 2002. Self-organized fish schools: An examination of emergent properties. Biol. Bull. 202, 296–305.

    Article  Google Scholar 

  • Partridge, B.L., 1982. The structure and function of fish schools. Scientific American 246, 90–99.

    Article  Google Scholar 

  • Schweitzer, F., 2003. Brownian agents and active particles. Collective dynamics in the natural and social sciences, Springer Series in Synergetics.

  • Schweitzer, F., Ebeling, W., Tilch, B., 1998. Complex motion of Brownian particles with energy depots. Phys. Rev. Lett. 80(23), 5044–5047.

    Article  Google Scholar 

  • Schweitzer, F., Ebeling, W., Tilch, B., 2001. Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Phys. Rev. E 64(2), 021110–1–021110–12.

    Google Scholar 

  • Schweitzer, F., Lao, K., Family, F., 1997. Active random walkers simulate trunk trail formation by ants. BioSystems 41, 153–166.

    Article  Google Scholar 

  • Stevens, A., Schweitzer, F., 1997. Aggregation induced by diffusing and nondiffusing media. In: Alt, W., Deutsch, A., Dunn, G. (Eds.), Dynamics of Cell and Tissue Motion. Birkhäuser, Basel, pp. 183–192.

  • Tilch, B., Schweitzer, F., Ebeling, W., 1999. Directed motion of brownian particles with internal energy depot. Physica A 273(3–4), 294–314.

    Article  Google Scholar 

  • Toner, J., Tu, Y., 1995. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys. Rev. Lett. 75(23), 4326–4329.

    Article  Google Scholar 

  • Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O., 1995. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schweitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mach, R., Schweitzer, F. Modeling Vortex Swarming In Daphnia. Bull. Math. Biol. 69, 539–562 (2007). https://doi.org/10.1007/s11538-006-9135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9135-3

Keywords

Navigation