Skip to main content
Log in

Generalized, Switch-Like Competitive Heterodimerization Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

High-dimensional switches have been proposed as a way to model cellular differentiation, particularly in the context of basic Helix-Loop-Helix (bHLH) competitive heterodimerization networks. A previous study derived a simple rule showing how many elements can be co-expressed, depending on the rate of competition within the network. A limitation to that rule, however, is that many biochemical parameters were considered to be identical. Here, we derive a generalized rule. This in turns allows one to study more ways in which these networks could be regulated, linking intrinsic cellular differentiation determinants to extra-cellular cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bengal, E. et al., 1992. Functional antagonism between c-Jun and MyoD proteins: A direct physical association. Cell 68(3), 507–519.

    Article  Google Scholar 

  • Cherry, J., Adler, F., 2000. How to make a biological switch. J. Theor. Biol. 203(2), 117–133.

    Article  Google Scholar 

  • Cinquin, O., 2006. Addendum to high-dimensional switches and the modeling of cellular differentiation (submitted).

  • Cinquin, O., Demongeot, J., 2005. High-dimensional switches and the modelling of cellular differentiation. J. Theor. Biol. 233(3), 391–411.

    Article  Google Scholar 

  • Deed, R. et al., 1997. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol. Cell. Biol. 17(12), 6815–6821.

    Google Scholar 

  • Ebert, P. et al., 2003. Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130(9), 1949–1959.

    Article  Google Scholar 

  • Firulli, B. et al., 2003. PKA, PKC, and the protein phosphatase 2A influence HAND factor function. A mechanism for tissue-specific transcriptional regulation. Mol. Cell 12(5), 1225–1237.

    Google Scholar 

  • Grinberg, A. Hu, C., Kerppola, T., 2004. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell. Biol. 24(10), 4294–4308.

    Article  Google Scholar 

  • Hara, E., Hall, M., Peters, G., 1997. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 16(2), 332–342.

    Article  Google Scholar 

  • Horwitz, M., 1996. Hypermethylated myoblasts specifically deficient in MyoD autoactivation as a consequence of instability of MyoD. Exp. Cell. Res. 226(1), 170–182.

    Article  Google Scholar 

  • Kuiper, R. et al., 2004. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res. 32(8), 2315–2322.

    Article  Google Scholar 

  • Lim, J., Choi, K., 2004. Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila. Development 131(22), 5573–5580.

    Article  Google Scholar 

  • Lluis, F. et al., 2005. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J. 24(5), 974–984.

    Article  Google Scholar 

  • Mann, R., Affolter, M., 1998. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8(4), 423–429.

    Article  Google Scholar 

  • Massari, M., Murre, C., 2000. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20(2), 429–440.

    Article  Google Scholar 

  • Page, J. et al., 2004. MEKK1 signaling through p38 leads to transcriptional inactivation of E47 and repression of skeletal myogenesis. J. Biol. Chem. 279(30), 30966–30972.

    Article  Google Scholar 

  • Perry, R., Parker, M., Rudnicki, M., 2001. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol. Cell. 8(2), 291–301.

    Article  Google Scholar 

  • Russell, R. et al., 2004. Id2 drives differentiation and suppresses tumor formation in the intestinal epithelium. Cancer Res. 64(20), 7220–7225.

    Article  Google Scholar 

  • Seo, S. et al., 2005. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 19(14), 1723–1734.

    Article  Google Scholar 

  • Simone, C. et al., 2004. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat. Genet. 36(7), 738–743.

    Article  Google Scholar 

  • Sloan, S. et al., 1996. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol. Cell. Biol. 16(12), 6900–6908.

    Google Scholar 

  • Sriuranpong, V., et al., 2002. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol. Cell. Biol. 22(9), 3129–3139.

    Article  Google Scholar 

  • Suelves, M. et al., 2004. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J. 23(2), 365–375.

    Article  Google Scholar 

  • Trott, R. et al., 2001. Drosophila melanogaster casein kinase II interacts with and phosphorylates the basic helix-loop-helix proteins m5, m7, and m8 derived from the enhancer of split complex. J. Biol. Chem. 276(3), 2159–2167.

    Google Scholar 

  • Viñals, F. et al., 2004. BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J. 23(17), 3527–3537.

    Article  Google Scholar 

  • Winter, B., Braun, T., Arnold, H., 1993. cAMP-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD. J. Biol. Chem. 268(13), 9869–9878.

    Google Scholar 

  • Xiong, W., Ferrell, J., 2003. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426(6965), 460–465.

    Article  Google Scholar 

  • Yu, L. et al., 2005. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat. Genet. 37(3), 265–274.

    Article  Google Scholar 

  • Zhou, J., Olson, E., 1994. Dimerization through the helix-loop-helix motif enhances phosphorylation of the transcription activation domains of myogenin. Mol. Cell. Biol. 14(9), 6232–6243.

    Google Scholar 

  • zur Lage, P. et al., 2004. EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation. Dev. Cell. 7(5), 687–696.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cinquin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinquin, O., Page, K.M. Generalized, Switch-Like Competitive Heterodimerization Networks. Bull. Math. Biol. 69, 483–494 (2007). https://doi.org/10.1007/s11538-006-9114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9114-8

Keywords

Navigation