Skip to main content

Advertisement

Log in

Modeling Intercellular Interactions in Early Mycobacterium Infection

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Infection with Mycobacterium tuberculosis (Mtb) is characterized by localized, roughly spherical lesions within which the pathogen interacts with host cells. Containment of the infection or progression of disease depends on the behavior of individual cells, which, in turn, depends on the local molecular environment and on contact with neighboring cells. Modeling can help us understand the nonlinear interactions that drive the overall dynamics in this system. Early events in infection are particularly important, as are spatial effects and inherently stochastic processes. We describe a model of early Mycobacterium infection using the CyCells simulator, which was designed to capture these effects. We relate CyCells simulations of the model to several experimental observations of individual components of the response to Mtb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aderem, A., 2003. Phagocytosis and the inflammatory response. J. Infect. Dis. 187(Suppl 2), S340–S345.

    Article  PubMed  Google Scholar 

  • Antia, R., Koella, J.C., et al., 1996. Models of the within-host dynamics of persistent mycobacterial infections. Proc. R. Soc. Lond. B. Biol. Sci. 263(1368), 257–263.

    Article  Google Scholar 

  • Barnes, P.F., Abrams, J.S., et al., 1993. Patterns of cytokine production by mycobacterium-reactive human T cell clones. Infect. Immun. 61(1), 197–203.

    PubMed  Google Scholar 

  • Blusse van Oud Alblas, A., Mattie, H., et al., 1983. A quantitative evaluation of pulmonary macrophage kinetics. Cell Tissue Kinet. 16(3), 211–219.

    PubMed  Google Scholar 

  • Bonecini-Almeida, M.G., Chitale, S., et al., 1998. Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: Requirement for IFN-gamma and primed lymphocytes. J. Immunol. 160(9), 4490–4499.

    PubMed  Google Scholar 

  • Brookes, R.H., Pathan, A.A., et al., 2003. CD8+ T cell-mediated suppression of intracellular Mycobacterium tuberculosis growth in activated human macrophages. Eur. J. Immunol. 33(12), 3293–3302.

    Article  PubMed  Google Scholar 

  • Chackerian, A.A., Alt, J.M., et al., 2002. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T cell immunity. Infect. Immun. 70(8), 4501–4509.

    Article  PubMed  Google Scholar 

  • Corbett, E.L., Watt, C.J., et al., 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163(9), 1009–1021.

    Article  PubMed  Google Scholar 

  • Dallon, J.C., 2000. Numerical aspects of discrete and continuum hybrid models in cell biology. Appl. Numer. Math. 32(2), 137–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Dannenberg, A.M.J., Rook, G.A.W., 1994. Pathogenesis of pulmonary tuberculosis: An interplay of tissue-damaging and macrophage-activating immune responses—dual mechanisms that control bacilary multplication. In: Bloom, B.R. (Ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, DC.

    Google Scholar 

  • Davis, J.M., Clay, H., et al., 2002. Real-time visualization of mycobacterium—macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17(6), 693–702.

    Article  PubMed  Google Scholar 

  • Dinarello, C.A., 2005. Differences between anti-tumor necrosis factor-alpha monoclonal antibodies and soluble TNF receptors in host defense impairment. J. Rheumatol. Suppl. 74, 40–47.

    PubMed  Google Scholar 

  • Ding, A.H., Nathan, C.F., et al., 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141(7), 2407–2412.

    PubMed  Google Scholar 

  • Engele, M., Stossel, E., et al., 2002. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J. Immunol. 168(3), 1328–1337.

    PubMed  Google Scholar 

  • Fishman, M.A., Perelson, A.S., 1999. Th1/Th2 differentiation and cross regulation. Bull. Math. Biol. 61, 403–436.

    Article  Google Scholar 

  • Flesch, I.E., Kaufmann, S.H., 1990. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58(8), 2675–2677.

    PubMed  Google Scholar 

  • Fulton, S.A., Cross, J.V., et al., 1998. Regulation of interleukin-12 by interleukin-10, transforming growth factor-beta, tumor necrosis factor-alpha, and interferon-gamma in human monocytes infected with Mycobacterium tuberculosis H37Ra. J. Infect. Dis. 178(4), 1105–1114.

    PubMed  Google Scholar 

  • Hill, A.V., 1998. The immunogenetics of human infectious diseases. Annu. Rev. Immunol. 16, 593–617.

    Article  PubMed  Google Scholar 

  • Hogan, L.H., Macvilay, K., et al., 2001. Mycobacterium bovis strain bacillus Calmette-Guerin-induced liver granulomas contain a diverse TCR repertoire, but a monoclonal T cell population is sufficient for protective granuloma formation. J. Immunol. 166(10), 6367–6375.

    PubMed  Google Scholar 

  • Hume, D.A., 2000. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96(7), 2323–2328.

    PubMed  Google Scholar 

  • Janeway, C.A., Travers, P., et al., 1999. Immunobiology: The Immune System in Health and Disease, Current Biology Publications, New York.

    Google Scholar 

  • Jenkins, M.K., Khoruts, A., et al., 2001. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45.

    Article  PubMed  Google Scholar 

  • Kaufmann, S.H.E., 1999. Immunity to intracellular bacteria. In: Paul, W.E. (Ed.), Fundamental Immunology. Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  • Kaufmann, S.H.E., 2001. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1(1), 20–30.

    Article  PubMed  Google Scholar 

  • Keane, J., Remold, H.G., et al., 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164(4), 2016–2020.

    PubMed  Google Scholar 

  • Kirschner, D., Marino, S., 2005. Mycobacterium tuberculosis as viewed through a computer. Trends Microbiol. 13(5), 206–211.

    Article  PubMed  Google Scholar 

  • Lauffenburger, D.A., Linderman, J.J., 1993. Receptors: Models for Binding, Trafficking, and Signaling. Oxford University Press, New York.

    Google Scholar 

  • Ma, J., Chen, T., et al., 2003. Regulation of macrophage activation. Cell Mol. Life Sci. 60(11), 2334–2346.

    Article  PubMed  Google Scholar 

  • MacMicking, J.D., Taylor, G.A., et al., 2003. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302(5645), 654–659.

    Article  PubMed  Google Scholar 

  • Manabe, Y.C., Bishai, W.R., 2000. Latent Mycobacterium tuberculosis—persistence, patience, and winning by waiting. Nat. Med. 6(12), 1327–1329.

    Article  PubMed  Google Scholar 

  • Meier-Schellersheim, M., 2001. The Immune System as a Complex System: Description and Simulation of the Interactions of its Constitutents. Ph.D. Thesis, University of Hamburg, Hamburg

  • Mohan, V.P., Scanga, C.A., et al., 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: Possible role for limiting pathology. Infect. Immun. 69(3), 1847–1855.

    Article  PubMed  Google Scholar 

  • Moore, K.W., de Waal Malefyt, R., et al., 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765.

    Article  PubMed  Google Scholar 

  • Newport, M.J., Huxley, C.M., et al., 1996. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335(26), 1941–1949.

    Article  PubMed  Google Scholar 

  • North, R.J., Jung, Y.J., 2004. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599–623.

    Article  PubMed  Google Scholar 

  • Oddo, M., Renno, T., et al., 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160(11), 5448–5454.

    PubMed  Google Scholar 

  • Press, W.H., Teukolsky, S.A., et al., 1998. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reinhardt, R.L., Khoruts, A., et al., 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410(6824), 101–105.

    Article  PubMed  Google Scholar 

  • Rhoades, E.R., Frank, A.A., et al., 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis. 78(1), 57–66.

    Article  PubMed  Google Scholar 

  • Rojas, M., Olivier, M., et al., 1999. TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J. Immunol. 162(10), 6122–6131.

    PubMed  Google Scholar 

  • Schroder, K., Hertzog, P.J., et al., 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75(2), 163–189.

    Article  PubMed  Google Scholar 

  • Segovia-Juarez, J.L., Ganguli, S., et al., 2004. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376.

    Article  PubMed  MathSciNet  Google Scholar 

  • Serbina, N.V., Flynn, J.L., 1999. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect. Immun. 67(8), 3980–3988.

    PubMed  Google Scholar 

  • Shi, L., Jung, Y.J., et al., 2003. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl. Acad. Sci. U.S.A. 100(1), 241–246.

    Article  PubMed  Google Scholar 

  • Silver, R.F., Li, Q., et al., 1998. Expression of virulence of Mycobacterium tuberculosis within human monocytes: Virulence correlates with intracellular growth and induction of tumor necrosis factor alpha but not with evasion of lymphocyte-dependent monocyte effector functions. Infect. Immun. 66(3), 1190–1199.

    PubMed  Google Scholar 

  • Stewart, G.R., Robertson, B.D., et al., 2003. Tuberculosis: A problem with persistence. Nat. Rev. Microbiol. 1(2), 97–105.

    Article  PubMed  Google Scholar 

  • Thomson, A.W., 1994. The Cytokine Handbook. Academic Press, London, San Diego.

    Google Scholar 

  • Thomson, A.W., 1998. The Cytokine Handbook. Academic Press, San Diego.

    Google Scholar 

  • Tsukaguchi, K., de Lange, B., et al., 1999. Differential regulation of IFN-gamma, TNF-alpha, and IL-10 production by CD4(+) alphabetaTCR+ T cells and vdelta2(+) gammadelta T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol. 194(1), 12–20.

    Article  PubMed  Google Scholar 

  • Ulrichs, T., Kosmiadi, G.A., et al., 2005. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis. 192(1), 89–97.

    Article  PubMed  Google Scholar 

  • Ulrichs, T., Kosmiadi, G.A., et al., 2004. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 204(2), 217–228.

    Article  PubMed  Google Scholar 

  • Vawer, A., Rashbass, J., 1997. The biological toolbox: A computer program for simulating basic biological and pathological processes. Comput. Methods Programs Biomed. 52(3), 203–211.

    Article  PubMed  Google Scholar 

  • Warrender, C., Forrest, S., et al., 2004. Homeostasis of peripheral immune effectors. Bull. Math. Biol. 66(6), 1493–1514.

    Article  PubMed  Google Scholar 

  • Wayne, L.G., Sohaskey, C.D., 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163.

    Article  PubMed  Google Scholar 

  • Wigginton, J.E., Kirschner, D., 2001. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 166(3), 1951–1967.

    PubMed  Google Scholar 

  • Young, M.E., Carroad, P.A., et al., 1980. Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22, 947–955.

    Article  Google Scholar 

  • Yssel, H., De Waal Malefyt, R., et al., 1992. IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J. Immunol. 149(7), 2378–2384.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Warrender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrender, C., Forrest, S. & Koster, F. Modeling Intercellular Interactions in Early Mycobacterium Infection. Bull. Math. Biol. 68, 2233–2261 (2006). https://doi.org/10.1007/s11538-006-9103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9103-y

Keywords

Navigation