Skip to main content
Log in

On the Feedback Between Theory and Experiment in Elucidating the Molecular Mechanisms Underlying Neurotransmitter Release

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This review describes the development of the molecular level Ca2+-voltage hypothesis. Theoretical considerations and feedback between theory and experiments played a key role in its development. The theory, backed by experiments, states that at fast synapses, membrane potential by means of presynaptic inhibitory autoreceptors controls initiation and termination of neurotransmitter release. A molecular kinetic scheme which depicts initiation and termination of evoked release is discussed. This scheme is able to account for both spontaneous release and evoked release. The physiological implications of this scheme are enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon, S., 1996. Parallel computation enables precise description of Ca2+ distribution in nerve terminals. Bull. Math. Biol. 58, 1075–1097.

    Article  PubMed  MATH  Google Scholar 

  • Andreu, R., Barrett, E.F., 1980. Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction. J. Physiol. (Lond.) 308, 79–97.

    Google Scholar 

  • Atwood, H.L., Wojtowicz, J.M., 1986. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28, 275–362.

    Article  PubMed  Google Scholar 

  • Augustine, G.J., Charlton, M.P., Smith, S.J., 1987. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci. 10, 633–693.

    Article  PubMed  Google Scholar 

  • Ben-Chaim, Y., Tour, O., Dascal, N., Parnas, I., Parnas, H., 2003. The M 2 muscarinic G-protein-coupled receptor is voltage-sensitive. J. Biol. Chem. 278(25), 22482–22491.

    Article  PubMed  Google Scholar 

  • Bollman, J.H., Sackmann, B., Borst, J.G., 2000. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957.

    Article  PubMed  Google Scholar 

  • Dodge, F.A., Rahamimmoff, R., 1967. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432.

    Google Scholar 

  • Datyner, N.B., Gage, P.W., 1980. Phasic secretion of acetylcholine at a mammalian neuromuscular junction. J. Physiol. (Lond.) 303, 299–314.

    Google Scholar 

  • Heidelberger, R., Heinemann, C., Neher, E., Matthews, G., 1994. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371(6497), 513–515.

    Article  PubMed  Google Scholar 

  • Ilouz, N., Branski, L., Pranis, J., Parnas, H., Linial, M., 1999. Depolarization affects the binding properties of muscarinic acetylcholine receptors and their interaction with proteins of the exocytic apparatus. J. Biol. Chem. 274, 29519–29528.

    Article  PubMed  Google Scholar 

  • Kasai, H., 1999. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 22, 88–93.

    Article  PubMed  Google Scholar 

  • Katz, B., 1969. The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool.

    Google Scholar 

  • Khanin, R., Parnas, H., Segel, L.A., 1997. First step negative feedback accounts for inhibition of fast neurotransmitter release. J. Theor. Biol. 188, 261–276.

    Article  PubMed  Google Scholar 

  • Linial, M., Ilouz, N., Parnas, H., 1997. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery. J. Physiol. (Lond.) 504, 251–258.

    Article  Google Scholar 

  • Llinás, R., 1977. Calcium and transmitter release in squid synapse. Soc. Neurosci. Symp. 2, 139–160.

    Google Scholar 

  • MacDermott, A.B., Role, L.W., Siegelbaum, S., 1999. Presynaptic ionotropic receptors and the control of transmiter release. Annu. Rev. Neurosci. 22, 443–485.

    Article  PubMed  Google Scholar 

  • Parnas, I., Dudel, J., Parnas, H., Ravin, R., 1996. Glutamate depresses release by activating nonconventional glutamate receptors at crayfish nerve terminals. Eur. J. Neurosci. 8, 116– 126.

    Article  PubMed  Google Scholar 

  • Parnas, H., Parnas, I., 1994. Neurotransmitter release at fast synapses. J. Membr. Biol. 142, 267–279.

    PubMed  Google Scholar 

  • Parnas, H., Parnas, I., Ravin, R., Yudelevitch, B., 1994. Glutamate and N-methyl-D-asparate affect release from crayfish axon terminals in a voltage-dependent manner. Proc. Natl. Acad. Sci. USA 91, 11586–11590.

    Article  PubMed  Google Scholar 

  • Parnas, H., Parnas, I., Segel, L., 1986. A new method for determining co-operativity in neurotransmitter release. J. Theor. Biol. 119, 481–499.

    Article  PubMed  Google Scholar 

  • Parnas, H., Parnas, I., Segel, L.A., 1990. On the contribution of mathematical models to the understanding of neurotransmitter release. Int. Rev. Neurobiol. 32, 1–50.

    Article  PubMed  Google Scholar 

  • Parnas, H., Segel, L.A., Dudel, J., Parnas, I., 2000. Autoreceptors, membrane potential and the regulation of transmitter release. Trends Neurosci. 23(2), 60–68.

    Article  PubMed  Google Scholar 

  • Parnas, H., Slutsky, I., Rashkovan, G., Silman, I., Wess, J., Parnas, I., 2005. Depolarization initiates phasic ACh release by relief of a tonic block imposed by presynaptic M2 muscarinic receptors. J. Neurophysiol. 93, 3257–3269.

    Article  PubMed  Google Scholar 

  • Parnas, H., Valle-Lisboa, J.C., Segel, L.A., 2002. Can the Ca2+ hypothesis and the Ca2+-voltage hypothesis for neurotransmitter release be reconciled? Proc. Natl. Acad. Sci. USA 99(26), 17149–17154.

    Article  Google Scholar 

  • Schneggebburger, R., Neher, E., 2000. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893.

    Article  PubMed  Google Scholar 

  • Silinsky, E.M., 1985. The biophysical pharmacology of calcium-dependent acetylcholine secretion. Pharmacol. Rev. 37, 81–132.

    PubMed  Google Scholar 

  • Silinsky, E.M., Watanabe, M., Redman, R.S., Qiu, R., Hirsh, J.K., Hunt, J.M., Solosona, C.S., Alford, S., MacDonald, R.C., 1995. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings. J. Physiol. 482, 511–520.

    PubMed  Google Scholar 

  • Slutsky, I., Parnas, H., Parnas, I., 1999. Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction. J. Physiol. (Lond.) 514(57), 769–782.

    Article  Google Scholar 

  • Slutsky, I., Rashkovan, G., Parnas, H., Parnas, I., 2002. Ca2+-independent feedback inhibition of acetylcholine release in frog neuromuscular junction. J. Neurosci. 22, 3426–3433.

    PubMed  Google Scholar 

  • Slutsky, I., Silman, I., Parnas, H., Parnas, I., 2001. Presynaptic M2 muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction. J. Physiol. (Lond.) 536, 717–725.

    Article  Google Scholar 

  • Slutsky, I., Wess, J., Gomeza, A.J., Dudel, J., Parnas, I., Parnas, H., 2003. Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release. J. Neurophysiol. 89, 1954–1967.

    Article  PubMed  Google Scholar 

  • Wessler, I., 1989. Control of transmitter release from the motor nerve by presynaptic nicotinic abd muscarinic autoreceptors. Trends. Pharmacol. Sci. 10, 110–114.

    Article  PubMed  Google Scholar 

  • Yusim, K., Parnas, H., Segel, L., 1999. Theory of neurotransmitter release control based on voltage-dependent interaction between autoreceptors and proteins of the exocytotic machinery. Bull. Math. Biol. 61, 701–725.

    Article  Google Scholar 

  • Yusim, K., Parnas, H., Segel, L., 2000. Theory of the feedback inhibition of fast release of neurotransmitter. Bull. Math. Biol. 62, 717–757.

    Article  PubMed  Google Scholar 

  • Yamada, W.M., Zucker, R.S., 1992. Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys. J. 61(3), 671–682.

    Article  PubMed  Google Scholar 

  • Zucker, R.S., 1996. Exocytosis: a molecular and physiological perspective. Neuron 17, 1049–1055.

    Article  PubMed  Google Scholar 

  • Zamponi, G.W., Snutch, T.P., 1998. Modulation of voltage-dependent calcium channels by G proteins. Curr. Opin. Neurobiol. 8, 351–366.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Parnas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanin, R., Parnas, I. & Parnas, H. On the Feedback Between Theory and Experiment in Elucidating the Molecular Mechanisms Underlying Neurotransmitter Release. Bull. Math. Biol. 68, 997–1009 (2006). https://doi.org/10.1007/s11538-006-9099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9099-3

Keywords

Navigation