Skip to main content
Log in

An Optimization Algorithm for a Distributed-Loop Model of an Avian Urine Concentrating Mechanism

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

To better understand how the avian kidney’s morphological and transepithelial transport properties affect the urine concentrating mechanism (UCM), an inverse problem was solved for a mathematical model of the quail UCM. In this model, a continuous, monotonically decreasing population distribution of tubes, as a function of medullary length, was used to represent the loops of Henle, which reach to varying levels along the avian medullary cones. A measure of concentrating mechanism efficiency – the ratio of the free-water absorption rate (FWA) to the total NaCl active transport rate (TAT) – was optimized by varying a set of parameters within bounds suggested by physiological experiments. Those parameters include transepithelial transport properties of renal tubules, length of the prebend enlargement of the descending limb (DL), DL and collecting duct (CD) inflows, plasma Na+ concentration, length of the cortical thick ascending limbs, central core solute diffusivity, and population distribution of loops of Henle and of CDs along the medullary cone. By selecting parameter values that increase urine flow rate (while maintaining a sufficiently high urine-to-plasma osmolality ratio (U/P)) and that reduce TAT, the optimization algorithm identified a set of parameter values that increased efficiency by ∼60% above base-case efficiency. Thus, higher efficiency can be achieved by increasing urine flow rather than increasing U/P. The algorithm also identified a set of parameters that reduced efficiency by ∼70% via the production of a urine having near-plasma osmolality at near-base-case TAT.

In separate studies, maximum efficiency was evaluated as selected parameters were varied over large ranges. Shorter cones were found to be more efficient than longer ones, and an optimal loop of Henle distribution was found that is consistent with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braun, E.J., Dantzler, W.H., 1972. Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Am. J. Physiol. 222, 617–629.

    PubMed  CAS  Google Scholar 

  • Braun, E.J., Reimer, P.R., 1988. Structure of avian loop of Henle as related to countercurrent multiplier system. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 255, F500—F512.

    CAS  Google Scholar 

  • Breinbauer, M., 1988. Das Nierenmodell als inverses problem, Diploma thesis, Technical University of Munich.

  • Breinbauer, M., Lory, P., 1991. The kidney model as an inverse Problem. Appl. Math. Comp. 44, 195–223.

    Article  MATH  Google Scholar 

  • Casotti, G., Lindberg, K.K., Braun, E.J., 2000. Functional morphology of the avian medullary cone. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 279, R1722—R1730.

    CAS  Google Scholar 

  • Chou, C., Knepper, M., 1992. In vitro perfusion of chinchilla thin limb segments: Segmentation and osmotic water permeability. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 263, F417—F426.

    CAS  Google Scholar 

  • Cussler, E.L., 1997, Diffusion: Mass Transfer in Fluid Systems, 2nd edition. Cambridge University Press, New York.

    Google Scholar 

  • Eaton, D.C., Pooler, J.P., 2004. Vander’s Renal Physiology, 6th edition. Lange Medical Books/McGraw-Hill.

  • Emery, N., Poulson, T.L., Kinter, W.B., 1972. Production of concentrated urine by avian kidneys. Am. J. Physiol. 223, 180–187.

    PubMed  CAS  Google Scholar 

  • Friedman, M.H., 1986. Principles and Models of Biological Transport. Springer-Verlag, Berlin.

    Google Scholar 

  • Goldstein, D.L., Braun, E.J., 1989. Structure and concentrating ability in the avian kidney. Am. J. Physiol. (Regulat. Integrat. Comp. Physiol. 25) 256, R501—R509.

    CAS  Google Scholar 

  • Gottschalk, C., Mylle, M., 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196, 927–936.

    PubMed  CAS  Google Scholar 

  • Greger, R., Velázquez, H., 1987. The cortical thick ascending limb and early distal convoluted tubule in the concentrating mechanism. Kidney Int. 31, 590–596.

    PubMed  CAS  Google Scholar 

  • Han, J., Thompson, K., Chou, C., Knepper, M., 1992. Experimental tests of three-dimensional model of urinary concentrating mechanism. J. Am. Soc. Nephrol. 2, 1677–1688.

    PubMed  CAS  Google Scholar 

  • Imai, M., 1977. Function of the thin ascending limb of Henle of rats and hamster perfused in vitro. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 232, F201—F209.

    CAS  Google Scholar 

  • Jamison, R.L., Kriz, W., 1982. Urinary Concentrating Mechanism: Structure and Function. Oxford University Press, New York.

    Google Scholar 

  • Johnson, O.W. 1979. Urinary organs. In: King A.S., McLelland, J. (Eds.), From and Function in Birds. Academic Press, London, Vol. 1, pp. 183–235.

    Google Scholar 

  • Kedem, O., Katchalsky, A., 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246.

    Article  PubMed  CAS  Google Scholar 

  • Kedem, O., Leaf, A., 1966. The relation between salt and ionic transport coefficients. J. Gen. Physiol. 49, 655–662.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Tewarson, R.P., 1996. Computational techniques for inverse problems in kidney modeling. Appl. Math. Lett. 9(3), 77–81.

    Article  MATH  MathSciNet  Google Scholar 

  • Knepper, M., Saidel, G., Hascall, V., Dwyer, T., 2003. Concentration of solutes in the renal inner medulla: Interstitial hyaluronan as a mechano-osmotic transducer. Am. J. Physiol. Renal Physiol. 284, F433—F446.

    PubMed  CAS  Google Scholar 

  • Koepsell, H., Kriz, W., Schnermann, J., 1972. Pattern of luminal diameter changes along the descending and ascending thin limbs of the loop of Henle in the inner medullary zone of the rat kidney. Z. Anat. Entwiekl-Gesch. 138, 321–328.

    Article  CAS  Google Scholar 

  • Kuhn, W., Ryffel, K., 1942. Herstellung konzentrierter Losöngen aus verdönnten durch blosse Membranwirkung: Ein Modellversuch zur Funktion der Niere. Z. Physiol. Chem. 276, 145–178.

    CAS  Google Scholar 

  • Laverty, G., Dantzler, W.H., 1982. Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 243, F561—F569.

    CAS  Google Scholar 

  • Layton, H.E., 1986. Distribution of Henle’s loops may enhance urine concentrating capability. Biophys. J. 49, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Layton, H.E., Davies, J.M., 1993. Distributed solute and water reabsorption in a central core model of the renal medulla. Math. Biosci. 116, 169–196.

    Article  PubMed  CAS  MATH  Google Scholar 

  • Layton, H.E., Davies, J.M., Casotti, G., Braun, E.J., 2000. Mathematical model of an avian urine concentrating mechanism. Am. J. Physiol. Renal Physiol. 279, F1139—F1160.

    PubMed  CAS  Google Scholar 

  • Layton, A.T., Layton, H.E., 2005. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla: II. Parameter sensitivity and tubular inhomogeneity. Am. J. Physiol. Renal Physiol. 289, F1367—F1381.

    Article  PubMed  CAS  Google Scholar 

  • Layton, A., Pannabecker, T., Dantzler, W., Layton, H., 2004. Two modes for concentrating urine in rat inner medulla. Am. J. Physiol. Renal Physiol. 287, F816—F839.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Morimoto, T., Kondo, Y., Iinuma, K., Uchida, S., Imai, M., 2001. “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int. 60, 680–693.

    Article  PubMed  CAS  Google Scholar 

  • Marcano-Velázquez, M., Layton, H.E., 2003. An inverse algorithm for a mathematical model of an avian urine concentrating mechanism. Bull. Math. Biol. 65(4), 665–691.

    Article  PubMed  Google Scholar 

  • Mejía, R., Sands, J.M., Stephenson, J.L., Knepper, M.A., 1989. Renal actions of atrial natriuretic factor: A mathematical modeling study. Am. J. Physiol. Renal Physiol. 257, 1146–157.

    Google Scholar 

  • Mejía, R., Stephenson, J., 1979. Numerical solution of multinephron kidney equations. J. Comp. Phys. 32(2), 235–246.

    Article  MATH  ADS  Google Scholar 

  • Michalewics, Z., 1999. Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition. Springer-Verlag, Berlin.

    Google Scholar 

  • Miwa, T., Nishimura, H., 1986. Diluting segment in avian kidney: II. Water and chloride transport. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 250, R341—R347.

    CAS  Google Scholar 

  • Murtagh, B.A., Saunders, M.A., 1998. MINOS 5.5 User’s Guide, Technical Report Sol 83-20R, Department of Operations Research, Stanford University, Stanford, CA.

    Google Scholar 

  • Netter, F., 1973. The CIBA Collection of Medical Illustrations: Vol. 6. Kidneys, Ureters, and Urinary Bladder. CIBA Pharmaceutical Company, Summit, NJ.

    Google Scholar 

  • Nishimura, H., Koseki, C., Imai, M., Braun, E.J., 1989. Sodium chloride and water transport in the thin descending limb of Henle of the quail. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 257, F994—F1002.

    CAS  Google Scholar 

  • Nishimura, H., Koseki, C., Patel, T.B., 1996. Water transport in collecting ducts of Japanese quail. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 271, R1535—R1543.

    CAS  Google Scholar 

  • Pannabecker, T., Abbott, D., Dantzler, W., 2004. Three-dimensional functional reconstruction of inner medullary thin limbs of Henle’s loop. Am. J. Physiol. Renal Physiol. 286, F38—F45.

    Article  PubMed  CAS  Google Scholar 

  • Sands, J.M., 2002. Urine concentrating mechanism: Measured permeability values in medullary nephron segments and urea transport processes. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and Its Applications, vol. 129. Springer-Verlag, New York, pp. 193–210.

    Google Scholar 

  • Sands, J.M., Layton, H.E., 2000. Urine concentrating mechanism and its regulation. In: Seldin, D.W., Giebisch, G. (Eds.), The Kidney: Physiology and Pathophysiology, 3rd edition. Lippincott, Williams & Williams, Philadelphia, PA, pp. 1175–1216.

    Google Scholar 

  • Schnermann, J., Briggs, J., Schubert, G., 1982. In situ studies of the distal convoluted tubule in the rat: I. Evidence for NaCl secretion. Am. J. Physiol. 243, F160—F166 (Renal Fluid Electrolyte Physiol. 12).

    PubMed  CAS  Google Scholar 

  • Skadhauge, E., 1977. Solute composition of the osmotic space of ureteral urine in dehydrated chickens (gallus domesticus), Comp. Biochem. Physiol. 56A, 271–274.

    Article  Google Scholar 

  • Skadhauge, E., Schmidt-Nielsen, B., 1967: Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol. 212, 1313–1318.

    PubMed  CAS  Google Scholar 

  • Stephenson, J.L., 1972. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2, 85–94.

    PubMed  CAS  Google Scholar 

  • Stephenson, J.L., Tewarson, R.P., Mejía, R., 1974. Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system. PNAS 71, 1618–1622.

    Article  PubMed  CAS  MATH  ADS  Google Scholar 

  • Stephenson, J.L., Zhang, Y., Tewarson, R., 1989. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Am. J. Physiol. 257, F399—F413 (Renal Fluid Electrolyte Physiol. 26).

    PubMed  CAS  Google Scholar 

  • Stokes, J.B., 1982. Sodium and potassium transport across the cortical and outer medullary collecting duct tubule of the rabbit: Evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242, F514—F520 (Renal Fluid Electrolyte Physiol. 11).

    PubMed  CAS  Google Scholar 

  • Tewarson, R.P., 1993a. Inverse problem for kidney concentrating mechanism. Appl. Math. Lett. 6(5), 63–66.

    Article  MATH  Google Scholar 

  • Tewarson, R.P., 1993b. Models of kidney concentrating mechanism: Relationship between core concentration and tube permeabilities. Appl. Math. Lett. 6(6), 71–74.

    Article  MATH  Google Scholar 

  • Tewarson, R.P., Marcano, M., 1997. Use of generalized inverses in a renal optimization problem. Inverse Probl. Eng. 5, 1–9.

    Google Scholar 

  • Tewarson, R.P., Wang, H., Stephenson, J.L., Jen, J.F., 1991. Efficient solution of differential equations for kidney concentrating mechanism analyses. Appl. Math. Lett. 4(6), 69–72.

    Article  MATH  Google Scholar 

  • Weast, R.C.E., 1974. Handbook of Chemistry and Physics, 55th edition. CRC Press, Cleveland, OH.

    MATH  Google Scholar 

  • Wesson, L.G., Anslow, W.P., 1952. Effect of osmotic and mercurial diuresis on simultaneous water diuresis. Am. J. Physiol. 170, 255–269.

    PubMed  Google Scholar 

  • Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991a. Three-dimensional anatomy and renal concentrating mechanism: I. Modeling results. Am. J. Physiol. 260, F368—F383 (Renal Fluid Electrolyte Physiol. 29).

    CAS  Google Scholar 

  • Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991b. Three-dimensional anatomy and renal concentrating mechanism: II. Sensitivity results. Am. J. Physiol. 260, F384—F394 (Renal Fluid Electrolyte Physiol. 29).

    CAS  Google Scholar 

  • Williams, J.B., Pacelli, M.M., Braun, E.J., 1991. The effect of water deprivation on renal function in conscious unrestrained Gambel’s quail (Callipepla gambelii). Physiol. Zool. 4(5), 1200–1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Marcano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcano, M., Layton, A.T. & Layton, H.E. An Optimization Algorithm for a Distributed-Loop Model of an Avian Urine Concentrating Mechanism. Bull. Math. Biol. 68, 1625–1660 (2006). https://doi.org/10.1007/s11538-006-9087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9087-1

Keywords

Navigation