Skip to main content

Advertisement

Log in

Model Selection and Mixed-Effects Modeling of HIV Infection Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present an introduction to a model selection methodology and an application to mathematical models of in vivo HIV infection dynamics. We consider six previously published deterministic models and compare them with respect to their ability to represent HIV-infected patients undergoing reverse transcriptase mono-therapy. In the creation of the statistical model, a hierarchical mixed-effects modeling approach is employed to characterize the inter- and intra-individual variability in the patient population. We estimate the population parameters in a maximum likelihood function formulation, which is then used to calculate information theory based model selection criteria, providing a ranking of the abilities of the various models to represent patient data. The parameter fits generated by these models, furthermore, provide statistical support for the higher viral clearance rate c in Louie et al. [AIDS 17:1151–1156, 2003]. Among the candidate models, our results suggest which mathematical structures, e.g., linear versus nonlinear, best describe the data we are modeling and illustrate a framework for others to consider when modeling infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory, Akadémiai Kiadó, Budapest, Hungary, pp. 267–281.

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  • Akaike, H., 1977. On entropy maximization principle. In: Krishnaiah, P.R. (Ed.), Applications of Statistics. North Holland Publishing Company, Amsterdam, The Netherlands, pp. 27–41.

  • Banks, H.T., Bortz, D.M., 2005a. Inverse problems for a class of measure dependent dynamical systems. J. Inverse Ill-Posed Problems 13(2), 103–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Banks, H.T., Bortz, D.M., 2005b. A parameter sensitivity methodology in the context of HIV delay equation models. J. Math. Biol. 50(6), 607–625.

    Article  MATH  MathSciNet  Google Scholar 

  • Banks, H.T., Bortz, D.M., Holte, S.E., 2003. Incorporation of variability into the mathematical modeling of viral delays in HIV infection dynamics. Math. Biosci. 183(1), 63–91.

    Article  MATH  MathSciNet  Google Scholar 

  • Banks, H.T., Fitzpatrick, B.G., 1990. Statistical methods for model comparison in parameter estimation problems for distributed systems. J. Math. Biol. 28, 501–527.

    Article  MATH  MathSciNet  Google Scholar 

  • Bortz, D.M., 2006. Accurate model selection computations. Manuscript in preparation.

  • Bortz, D.M., Nelson, P.W., 2004. Sensitivity analysis of nonlinear lumped parameter models of HIV infection dynamics. Bull. Math. Biol. 66(5), 1009–1026.

    Article  MathSciNet  Google Scholar 

  • Bozdogan, H., 1988. ICOMP: A new model-selection criterion. In: Bock, H.H. (Ed.), Classification and Related Methods of Data Analysis. North Holland Publishing Company, Amsterdam, The Netherlands, pp. 599–608.

  • Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edition. Springer-Verlag, New York, NY.

  • Callaway, D.S., Perelson, A.S., 2002. HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64.

    Article  Google Scholar 

  • Ciupe, S., Bivort, B.L., Bortz, D.M., Nelson, P.W., 2006. Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200(1), 1–27.

    Google Scholar 

  • Davidian, M., Giltinan, D.M., 1995. Nonlinear Models for Repeated Measurement Data. No. 62 in Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton, FL.

  • Gorfine, M., Freedman, L., Shahaf, G., Mehr, R., 2003. Maximum likelihood estimator and likelihood ratio test in complex models: An application to B lymphocyte development. Bull. Math. Biol. 65, 1131–1139.

    Article  Google Scholar 

  • Griewank, A., Juedes, D., Utke, J., 1996. ADOL-C: A package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software 22(2), 131–167.

    Article  MATH  Google Scholar 

  • Grossman, Z., Feinberg, M., Kuznetsov, V., Dimitrov, D., Paul, W., 1998. HIV infection: How effective is drug combination treatment? Immunol. Today 19, 528–532.

    Google Scholar 

  • Grünwald, P.D., Myung, I.J., Pitt, M.A. (Eds.), 2005. Advances in Minimum Description Length: Theory and Applications. Neural Information Processing. MIT Press, Boston, MA.

    Google Scholar 

  • Hairer, E., Norsett, S.P., Wanner, G., 1993. Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edition. Series in Computational Mathematics. Springer-Verlag, Berlin.

  • Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A., 1996. Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. U.S.A. 93, 7247–7251.

    Article  Google Scholar 

  • Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S., 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Software 31(3).

  • Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M., Jan. 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510), 123–126.

  • Hurvich, C.M., Tsai, C.-L., 1989. Regression and time series model selection in small samples. Biometrika 76, 271–293.

    Google Scholar 

  • Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795.

    Article  MATH  Google Scholar 

  • Kim, H.-J., Cavanaugh, J.E., 2005. Model selection criteria based on Kullback information measures for nonlinear regression. J. Stat. Plann. Inf. 134(2), 332–349.

    Article  MATH  MathSciNet  Google Scholar 

  • Kramer, I., 1999. Modeling the dynamical impact of HIV on the immune system: Viral clearance, infection, and AIDS. Math. Comput. Model. 29, 95–112.

    Article  MATH  Google Scholar 

  • Kullback, S., Leibler, R. A., 1951. On information and sufficiency. Ann. Math. Stat. 22, 79–86.

    MathSciNet  Google Scholar 

  • Lloyd, A.L., 2001. The dependence of viral parameter estimates on the asumed viral load life cycle: Limitations of studies of viral load data. Proc. R. Soc. Lond., Ser. B 268, 847–854.

    Article  Google Scholar 

  • Louie, M., Hogan, C., Hurley, A., Simon, V., Chung, C., Padte, N., Lamy, P., Flaherty, J., Coakley, D., Mascio, M.D., Perelson, A.S., Markowitz, M., 2003. Determining the antiviral activity of tenofovir disoproxil fumarate in treatment-naive chronically HIV-1-infected individuals. AIDS 17, 1151–1156.

    Article  Google Scholar 

  • Mittler, J.E., Markowitz, M., Ho, D.D., Perelson, A.S., 1999. Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 13, 1415–1417.

    Article  Google Scholar 

  • Mittler, J.E., Sulzer, B., Neumann, A.U., Perelson, A.S., 1998. Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163.

    Article  MATH  Google Scholar 

  • Murray, J.M., Kaufmann, G., Kelleher, A.D., Cooper, D.A., 1998. A model of primary HIV-1 infection. Math. Biosci. 154, 57–85.

    Article  MATH  Google Scholar 

  • Nelson, P.W., Mittler, J.E., Perelson, A.S., 2001. Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV viral dynamic parameters. J. Acquired Immune Deficiency Syndromes 26, 405–412.

    Google Scholar 

  • Nelson, P.W., Murray, J.D., Perelson, A.S., 2000. A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, P.W., Perelson, A.S., 2002. Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M., 1997. Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217.

    Article  Google Scholar 

  • Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D., 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387(6629), 188–191.

    Article  Google Scholar 

  • Perelson, A.S., Kirschner, D.E., de Boer, R., 1993. Dynamics of HIV infection of CD4+ T-cells. Math. Biosci. 114, 81–125.

    Article  MATH  Google Scholar 

  • Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., 1996. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586.

    Article  Google Scholar 

  • Pinheiro, J.C., Bates, D.M., 2000. Mixed-Effects Models in S and S-PLUS. Statistics and Computing. Springer-Verlag, New York, NY.

    Google Scholar 

  • Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J.E., Markowitz, M., Moore, J.P., Perelson, A.S., Ho, D.D., 1999. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785.

    Article  Google Scholar 

  • Rissanen, J., 1989. Stochastic Complexity and Statistical Inquiry, vol. 15. Series in Computer Science. World Scientific, Singapore.

  • Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6, 461–464.

    MATH  Google Scholar 

  • Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–42, 623–656.

    Google Scholar 

  • Shibata, R., 1989. Statistical aspects of model selection. In: Willems, J.C. (Ed.), From Data to Model. Springer-Verlag, London, pp. 375–394.

  • Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S., 2000. Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301.

    Article  Google Scholar 

  • Takeuchi, K., 1976. Distribution of informational statistics and criterion of model fitting. Suri-Kagaku (Math. Sci.) 153, 12–18.

    Google Scholar 

  • Trefethen, L.N., Bau III, D., 1997. Numerical Linear Algebra. SIAM, Philadelphia, PA.

  • van Emden, M.H., 1971. An Analysis of Complexity, No. 35. Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam.

  • Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M., 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122.

    Article  Google Scholar 

  • Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A., 1999. Dynamics of macrophage and T cell infection by HIV. J. Theor. Biol. 196, 101–113.

    Article  Google Scholar 

  • Wu, H., 2005. Statistical methods for HIV dynamic studies in AIDS clinical trials. Stat. Methods Med. Res. 14, 1–22.

    Article  Google Scholar 

  • Wu, H., Ding, A., 1999. Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from aids clinical trials. Biometrics 55, 410–418.

    Article  MATH  Google Scholar 

  • Wu, H., Ding, A.A., de Gruttola, V., 1998. Estimation of HIV dynamic parameters. Stat. Med. 17, 2463–2485.

    Article  Google Scholar 

  • Wu, H., Wu, L., 2002a. Identification of significant host factors for hiv dynamics modeled by nonlinear mixed-effect models. Stat. Med. 21, 753–771.

    Article  Google Scholar 

  • Wu, L., Wu, H., 2002b. Missing time-dependent covariates in human immunodeficiency virus dynamic models. J. R. Stat. Soc., Ser. C (Appl. Stat.) 51, 297–318.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortz, D.M., Nelson, P.W. Model Selection and Mixed-Effects Modeling of HIV Infection Dynamics. Bull. Math. Biol. 68, 2005–2025 (2006). https://doi.org/10.1007/s11538-006-9084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9084-x

Keywords

Navigation