Skip to main content

Advertisement

Log in

Error Thresholds in a Mutation–selection Model with Hopfield-type Fitness

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The deterministic limit of a Hopfield-type mutation–selection model in the sequence space approach is investigated. Genotypes are identified with two-letter sequences. Mutation is modelled as a Markov process, fitness functions are of Hopfield type, where the fitness of a sequence is determined by the Hamming distances to a number of predefined patterns. Using a maximum principle for the population mean fitness in equilibrium, the error threshold phenomenon is studied for quadratic Hopfield-type fitness functions with small numbers of patterns. Different from previous investigations of the Hopfield model, the system shows error threshold behaviour not for all fitness functions, but only for certain parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, D.J., Gutfreund, H., Sompolinsky, H., 1985a. Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018.

    Article  MathSciNet  ADS  Google Scholar 

  • Amit, D.J., Gutfreund, H., Sompolinsky, H., 1985b. Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55 (14), 1530–1533.

    Article  ADS  Google Scholar 

  • Baake, E., Baake, M., Bovier, A., Klein, M., 2005. An asymptotic maximum principle for essentially linear evolution models. J. Math. Biol. 50(1), 83–114.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Baake, E., Baake, M., Wagner, H., 1997. Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78(3), 559–562, erratum, Phys. Rev. Lett. 79(1997), 1782.

    Google Scholar 

  • Baake, E., Gabriel, W., 2000. Biological evolution through mutation, selection, and drift: An introductory review. In: Stauffer, D., (Ed.), Annual Reviews of Computational Physics VII. World Scientific, Singapore, pp. 203–264.

  • Baake, E., Wagner, H., 2001. Mutation–selection models solved exactly with methods of statistical mechanics. Genet. Res. 78, 93–117.

    Article  PubMed  CAS  Google Scholar 

  • Boerlijst, M.C., Bonhoeffer, S., Nowak, M.A., 1996. Viral quasi-species and recombination. P. Roy. Soc. Lond., Series B 263(1376), 1577–1584.

    ADS  Google Scholar 

  • Bonhoeffer, S., Stadler, P.F., 1993. Error thresholds on correlated fitness landscapes. J. Theo. Biol. 164(3), 359–372.

    Article  Google Scholar 

  • Bürger, R., 2000. The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester.

    MATH  Google Scholar 

  • Campos, P.R.A., Adami, C., Wilke, C.O., 2002. Optimal adaptive performance and delocalization in NK fitness landscapes. Physica A 304(3–4), 495–506.

    Article  MATH  ADS  Google Scholar 

  • Crotty, S., Cameron, C.E., Andino, R., 2001. RNA virus error catastrophe: Direct molecular test by using ribavirin. P. Natl. Acad. Sci. USA 98(12), 6895–6900.

    Article  CAS  ADS  Google Scholar 

  • Crow, J.F., Kimura, M., 1970. An Introduction to Population Genetics Theory. Harper & Row, New York.

    MATH  Google Scholar 

  • Domingo, E., Escarmis, C., Sevilla, N., Moya, A., Elena, S.F., Quer, J., Novella, I.S., Holland, J.J., 1996. Basic concepts in RNA virus evolution. FASEB J. 10(8), 859–864.

    PubMed  CAS  Google Scholar 

  • Domingo, E., Holland, J.J., 1988. High error rates, population equilibrium, and evolution of RNA replication systems. In: Domingo, E. (Ed.), RNA Genetics. vol. 3. CRC Press, Boca Raton, p. 3.

    Google Scholar 

  • Domingo, E., Holland, J.J., 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Eigen, M., 1993. Viral quasispecies. Sci. Am. 269(1), 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., Biebricher, C.K., 1988. Sequence space and quasispecies evolution. In: Domingo, E. (Ed.), RNA Genetics. vol. 3. CRC Press, Boca Raton, pp. 211–245.

    Google Scholar 

  • Eigen, M., McCaskill, J., Schuster, P., 1989. The molecular quasi-species. Adv. Chem. Phys. 75, 149–263.

    CAS  Google Scholar 

  • Ewens, W.J., 2004. Mathematical Population Genetics, 2nd edition. Springer, New York.

    MATH  Google Scholar 

  • Franz, S., Peliti, L., 1997. Error threshold in simple landscapes. J.Phys. A 30 (13), 4481–4487.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Franz, S., Peliti, L., Sellitto, M., 1993. An evolutionary version of the random energy model. J. Phys. A 26 (23), L1195–L1199.

    Article  ADS  Google Scholar 

  • Garske, T., 2005. Mutation–Selection Models of Sequence Evolution in Population Genetics. PhD thesis, The Open University, Milton Keynes, UK.

  • Garske, T., Grimm, U., 2004a. Maximum principle and mutation thresholds for four-letter sequence evolution. Journal of Statistical Mechanics: Theory and Experiment P07007, (Preprint q-bio.PE/0406041).

  • Garske, T., Grimm, U., 2004b. A maximum principle for the mutation–selection equilibrium of nucleotide sequences. B. Math. Biol. 66(3), 397–421, (Preprint physics/0303053).

  • Hamming, R.W., 1950. Error detecting and error correcting codes. Bell Syst. Tech. J. 26(2), 147–160.

    MathSciNet  Google Scholar 

  • Hermisson, J., Redner, O., Wagner, H., Baake, E., 2002. Mutation selection balance: Ancestry, load, and maximum principle. Theor. Popul. Biol. 62, 9–46.

    Article  PubMed  MATH  Google Scholar 

  • Hermisson, J., Wagner, H., Baake, M., 2001. Four-state quantum chain as a model of sequence evolution. J. Stat. Phys. 102(1/2), 315–343.

    Article  CAS  MATH  MathSciNet  Google Scholar 

  • Higgs, P., 1994. Error thresholds and stationary mutant distributions in multilocus diploid genetics models. Genet. Res. Cambridge 63(1), 63–78.

    Google Scholar 

  • Holland, J.J., Domingo, E., de la Torre, J.C., Steinhauer, D.A., 1990. Mutation frequencies at defined single codon sites in vesicular stromatitis-virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Vir. 64(8), 3960–3962.

    CAS  Google Scholar 

  • Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79 (8), 2554–2558.

  • Huynen, M. A., Stadler, P. F., Fontana, W., 1996. Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Nat. Acad. Sci. USA 93 (1), 397–401.

    Google Scholar 

  • Karlin, S., 1966. A First Course in Stochastic Processes. Academic Press, New York.

    MATH  Google Scholar 

  • Kauffman, S., Levin, S., 1987. Towards a general theory of adaptive walks on rugged landscapes. J. Theo. Biol. 128, 11–45.

    CAS  MathSciNet  Google Scholar 

  • Kemeny, J.G., Snell, J.L., 1960. Finite Markov Chains. Van Nostrand Reinhold Company, New York.

    MATH  Google Scholar 

  • Leuthäusser, I., 1987. Statistical mechanics of Eigen's evolution model. J. Stat. Phys. 48(1/2), 343–360.

    Article  ADS  Google Scholar 

  • Loeb, L.A., Essigmann, J.M., Kazazi, F., Zhang, J., Rose, K.D., Mullins, J.I., 1999. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Nat. Acad. Sci. USA 96, 1492–1497.

    Google Scholar 

  • Nowak, M., Schuster, P., 1989. Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller's ratchet. J. Theo. Biol. 137(4), 375–395.

    CAS  Google Scholar 

  • Ohta, T., Kimura, M., 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22, 201–204.

    Article  MathSciNet  Google Scholar 

  • Peliti, L., 2002. Quasispecies evolution in general mean-field landscapes. Europhys. Lett. 57(5), 745–751.

    Article  CAS  ADS  Google Scholar 

  • Reidys, C., Forst, C.V., Schuster, P., 2001. Replication and mutation on neutral networks. B. Math. Biol. 63(1), 57–94.

    Article  CAS  Google Scholar 

  • Reidys, C.M., Stadler, P.F., 2002. Combinatorial landscapes. SIAM Rev. 44(1), 3–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Rumschitzky, D.S., 1987. Spectral properties of Eigen's evolution matrices. J. Math. Biol. 24, 667–680.

    MathSciNet  Google Scholar 

  • Sierra, S., Dávila, M., Lowenstein, P.R., Domingo, E., 2000. Response of foot-and-mouth disease virus to increased mutagenesis: Influence of viral load and fitness in loss of infectivity. J. Virol. 74(18), 8316–8323.

    Article  PubMed  CAS  Google Scholar 

  • Talagrand, M., 2003. Spin Glasses: A Challenge for Mathematicians. Springer, Berlin.

    Google Scholar 

  • Tarazona, P., 1992. Error thresholds for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models. Phys. Rev. A 45(8), 6038–6050.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Thompson, C.J., McBride, J.L., 1974. On Eigen's theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21(1–2), 127–142.

    MATH  MathSciNet  Google Scholar 

  • van Lint, J.H., 1982. Introduction to Coding Theory. Springer, Berlin.

    MATH  Google Scholar 

  • Whittle, P., 1976. Probability. Wiley, London.

    MATH  Google Scholar 

  • Wiehe, T., 1997. Model dependency of error thresholds: The role of fitness functions and contrasts between finite and infinite sites models. Genet. Res. Cambridge 69, 127–136.

    Google Scholar 

  • Wiehe, T., Baake, E., Schuster, P., 1995. Error propagation in reproduction of diploid organisms. A case study on single peaked landscapes. J. Theor. Biol. 177(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tini Garske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garske, T. Error Thresholds in a Mutation–selection Model with Hopfield-type Fitness. Bull. Math. Biol. 68, 1715–1746 (2006). https://doi.org/10.1007/s11538-006-9072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9072-1

Keywords

Navigation