Skip to main content

Advertisement

Log in

Mechanics and Chemotaxis in the Morphogenesis of Vascular Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The formation of vascular networks in vitro develops along two rather distinct stages: during the early migration-dominated stage the main features of the pattern emerge, later the mechanical interaction of the cells with the substratum stretches the network. Mathematical models in the relevant literature have been focusing just on either of the aspects of this complex system. In this paper, a unified view of the morphogenetic process is provided in terms of physical mechanisms and mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosi, D., Gamba, A., Serini, G., 2004. Cell directionality and chemotaxis in vascular morphogenesis. Bull. Math. Biol. 66(6), 1851–1873.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Ambrosi, D., Bussolino, F., Preziosi, L., 2005. A review of vasculogenesis models. J. Theor. Med. 6(1), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  • Bischofs, I.B., Schwartz, U.S., 2003. Cell organization in soft media due to active mechanosensing. PNAS, 100, 9274–9279.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Friedl, P., Wolf, K., 2003. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374.

    Article  PubMed  CAS  Google Scholar 

  • Ferrenq, I., Tranqui, L., Vailhe, B., Gumery, P.Y., Tracqui, P., 1997. Modelling biological gel contraction by cells: Mechanocellular formulation and cell traction quantification. Acta Biotheor. 45, 267–293.

    Article  PubMed  CAS  Google Scholar 

  • Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F., 2003. Percolation, morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 11810/1–4.

    Article  CAS  Google Scholar 

  • Galbraith, G.G., Sheetz, M.P., 1997. A micromachined device provides a new bend on fibroblast traction forces. PNAS Cell Biol. 94, 9114–9118.

    Article  CAS  Google Scholar 

  • Gazit, Y., Berk, D.A., Leunig, M., Baxter, L.T., Jain, R.K., 1995. Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys. Rev. E 75, 2428–2431.

    CAS  ADS  Google Scholar 

  • Grant, D., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G., Kleinman, H., 1989. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58, 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Gurtin, M.E., 1972. The linear theory of elasticity. In: Flügge, S. (Ed.), Handbuch der Physik, Vol. VI a/2. Springer Verlag, Berlin.

  • Helmlinger, G., Endo, M., Ferrara, N., Hlatky, L., Kain, R.K., 2000. Formation of endothelial cell networks. Nature 405, 139–141.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hendrix, M.J.C., Seftor, E.A., Meltzer, P.S., Gardner, L.M.G., Hess, A.R., Kirschmann, D.A., Sachatteman, G.C., Seftor, R.E.B., 2001. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA 98, 8018–8024.

    Google Scholar 

  • Kubota, Y., Kleinman, H., Martin, G., Lawley, T., 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk, R., 2005. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–588.

    Article  MATH  MathSciNet  Google Scholar 

  • Manoussaki, D., 2003. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM: Math. Model. Num. Anal. 37(4), 581–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D., 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Mariotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe'er, J., Trent, J.M., Meltzer, P.S., Hendrix, M.J.C., 1999. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenesis mimicry. Am. J. Pathol. 155, 739–752.

    Google Scholar 

  • Murray, J.D., Oster, G.F., 1984. Cell traction models for generation of pattern and form in morphogenesis. J. Math. Biol. 19, 265–279.

    PubMed  CAS  MATH  MathSciNet  Google Scholar 

  • Namy, P., Ohayon, J., Tracqui, P., 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120.

    Article  PubMed  MathSciNet  Google Scholar 

  • Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., Shima, D., 2002. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Gen. Dev. 16, 2684–2698.

    Article  CAS  Google Scholar 

  • Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F., 2003. Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779.

    Article  PubMed  CAS  Google Scholar 

  • Sambeth, R., Bamgaertner, A., 2001. Autocatalytic polymerization generates persistent random walk of crawling cells. Phys. Rev. Lett. 86, 5196–5199.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tranqui, L., Tracqui, P., 2000. Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. C.R. Acad. Sci. Paris, Science de la Vie 323, 31–47.

    CAS  ADS  Google Scholar 

  • Vailhe, B., Vittet, D., Feige, J.J., 2001. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81, 439–452.

    PubMed  CAS  Google Scholar 

  • Webb, D.J., Horwitz, A.F., 2003. New dimensions in cell migration. Nat. Cell Biol. 5, 690–692.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Bröcker, E.-B., Friedl, P., 2003. Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tosin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosin, A., Ambrosi, D. & Preziosi, L. Mechanics and Chemotaxis in the Morphogenesis of Vascular Networks. Bull. Math. Biol. 68, 1819–1836 (2006). https://doi.org/10.1007/s11538-006-9071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9071-2

Keywords

Navigation