Skip to main content
Log in

Modelling the Effect of Caveolae on G-protein Activation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study the effects on G-protein activation of a non-uniform distribution of signalling components. The spatial heterogeneity is attributed to caveolae, a specific membrane microdomain which has been observed to redistribute and concentrate signalling molecules. Diffusive coagulation-fragmentation equations are used to describe the aggregation of caveolin homo-oligomers and the subsequent formation of caveolae. A system of reaction-diffusion equation is thus formulated and, in order to describe the restrictions imposed by caveolae on the movement of receptors and G-protein, a segregation coefficient is introduced which serves to regulate the preference of the species to segregate according to the concentration of caveolae. The results demonstrate that the heterogeneous distribution of the signalling components and the efficiency of G-protein activation can vary significantly, depending on the concentration of caveolae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, R., Döring, W., 1935. The kinetic treatment of nuclear formation in supersaturated vapors. Ann. Phys 24, 719–752.

    Article  MATH  Google Scholar 

  • Chen, C.Y., Cordeaux, Y., Hill, S.J., King, J.R., 2003. Modelling of signalling via G-protein coupled receptors: Pathway-dependent agonist potency and efficacy. Bull. Math. Biol. 65, 933–958.

    Article  PubMed  Google Scholar 

  • Herrero, M.A., Velazguez, J.J.L., Wrzosek, D., 2000. Sol–gel transition in a coagulation–diffusion model. Physica D 114, 221–247.

    Article  Google Scholar 

  • Leff, P., Scaramellini, C., Law, C., McKechnie, K., 1997. A three-state receptor model of agonist action. Trends Pharmacol. Sci. 18, 355–362.

    PubMed  Google Scholar 

  • Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J., Hansen, S., Nishimoto, I., Lisanti, M., 1995. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701.

    Article  PubMed  Google Scholar 

  • Li, S., Song, K.S., Lisanti, M.P., 1996. Expression and characterization of recombinant cavelin. J. Biol. Chem. 271, 568–573.

    Article  PubMed  Google Scholar 

  • Lipowsky, R., 2002. Domains and rafts in membranes–Hidden dimensions of selforganization. J. Biol. Phys. 28, 195–210.

    Article  Google Scholar 

  • Mateev, S., Li, X., Everson, W., Smart, E.J., 2001. The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv. Drug Del. Rev. 49, 237–250.

    Article  Google Scholar 

  • Morton, K.W., Mayers, D.F., 1994. Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Oh, P., Schnitzer, J.E., 2001. Segregation of heterotrimeric G proteins in cell surface microdomains. Mol. Biol. Cell 12, 685–698.

    PubMed  Google Scholar 

  • Ostrom, R.S., 2002. New determinants of receptor–effector coupling: Trafficking and compartmentation in membrane microdomains. Mol. Pharmacol. 61, 473–476.

    Article  PubMed  Google Scholar 

  • Ostrom, R.S., Gregorian, C., Drenan, R.M., Xiang, Y., Regan, J.W., Insel, P.A., 2001. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276, 42063–42069.

    Article  PubMed  Google Scholar 

  • Pralle, A., Keller, P., Florin, E.-L., Simons, K., Hörber, J.K.H., 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007.

    Article  PubMed  Google Scholar 

  • Riccobene, T.A., Omann, G.M., Linderman, J.J., 1999. Modelling activation and desensitization of G-protein coupled receptors provides insight into ligand efficacy. J. Theor. Biol. 200, 207–222.

    Article  PubMed  Google Scholar 

  • Sabourin, T., Bastien, L., Bachvarov, D.R., Marceau, F., 2002. Agonist-induced translocation of the Kinin B1 receptor to caveolae-related rafts. Mol. Pharmacol. 6, 546–553.

    Article  Google Scholar 

  • Schegel, A., Volonte, D., Engelman, J.A., Galbiati, F., Mehta, P., Zhang, X., Scherer, P.E., Lisnati, M.P., 1998. Crowded little caves: Structure and function of caveolae. Cell. Signal. 10, 457–463.

    Article  PubMed  Google Scholar 

  • Seifert, R., Wenzel-Seifert, K., 2002. Constitutive activity of G-protein-coupled receptors: Cause of disease and common property of wild-type receptors. N-S Arch. Pharmacol. 366, 381–416.

    Article  Google Scholar 

  • Sens, P., Turner, M.S., 2004. Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys. J. 86, 2049–2057.

    Article  PubMed  Google Scholar 

  • Shaul, P.W., Anderson, R.G.W., 1998. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275, L843–L851.

    PubMed  Google Scholar 

  • Shea, L.D., Neubig, R.R., Linderman, J.J., 2000. Timing is everything–The role of kinetics in G protein activation. Life Sci. 68, 647–658.

    Article  PubMed  Google Scholar 

  • Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., Lisanti, M.P., 1999. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.

    PubMed  Google Scholar 

  • Thomsen, P., Roepstorff, K., Stahlhut, M., Van Deurs, B., 2002. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250.

    Article  PubMed  Google Scholar 

  • Tucek, S., Michal, P., Vlachova, V., 2002. Modelling the consequences of receptor–G-protein promiscuity. Trends Pharmacol. Sci. 23, 171–176.

    Article  PubMed  Google Scholar 

  • Weiss, J., Morgan, P., Lutz, M., Kenakin, T., 1995a. The cubic ternary complex receptor-occupancy model. I. Model description. J. Theor. Biol. 178, 151–167.

    Google Scholar 

  • Weiss, J., Morgan, P., Lutz, M., Kenakin, T., 1995b. The cubic ternary complex receptor-occupancy model. II. Understanding apparent affinity. J. Theor. Biol. 178, 169–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.Y., King, J.R. Modelling the Effect of Caveolae on G-protein Activation. Bull. Math. Biol. 68, 863–888 (2006). https://doi.org/10.1007/s11538-005-9058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9058-4

Keywords

Navigation