Skip to main content

Advertisement

Log in

Stochastic kinetics description of a simple transcription model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a stochastic model of transcription kinetics in order to characterize the distributions of transcriptional delay and of elongation rates. Transcriptional delay is the time which elapses between the binding of RNA polymerase to a promoter sequence and its dissociation from the DNA template strand with consequent release of the transcript. Transcription elongation is the process by which the RNA polymerase slides along the template strand. The model considers a DNA template strand with one promoter site and n nucleotide sites, and five types of reaction processes, which we think are key ones in transcription. The chemical master equation is a set of ordinary differential equations in 3n variables, where n is the number of bases in the template. This model is too huge to be handled if n is large. We manage to get a reduced Markov model which has only 2n independent variables and can well approximate the original dynamics. We obtain a number of analytical and numerical results for this model, including delay and transcript elongation rate distributions. Recent studies of single-RNA polymerase transcription by using optical-trapping techniques raise an issue of whether the elongation rates measured in a population are heterogeneous or not. Our model implies that in the cases studied, different RNA polymerase molecules move at different characteristic rates along the template strand. We also discuss the implications of this work for the mathematical modeling of genetic regulatory circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions. Dover, New York.

    Google Scholar 

  • Adelman, K., La Porta, A., Santangelo, T.J., Lis, J.T., Roberts, J.W., Wang, M.D., 2002. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc. Natl. Acad. Sci. U.S.A. 99, 13538–13543.

  • Bai, L., Shundrovsky, A., Wang, M.D., 2004. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344, 335–349.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, R.D., Painter, P.R., Marr, A.G., 1982. Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–193.

    Article  PubMed  CAS  Google Scholar 

  • Buchholtz, F., Schneider, F.W., 1987. Computer simulation of T3/T7 phage infection using lag times. Biophys. Chem. 26, 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Busenberg, S.N., Mahaffy, J.M., 1988. The effects of dimension and size for a compartmental model of repression. SIAM. J. Appl. Math. 48, 882–903.

    Article  MATH  MathSciNet  Google Scholar 

  • Butkov, E., 1968. Mathematical Physics. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Cooke, K.L., Grossman, Z., 1982. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Davenport, R.J., Wuite, G.J.L., Landick, R., Bustamante, C., 2000. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500.

    Google Scholar 

  • Davis, M.J., Skodje, R.T., 2001. Geometric approach to multiple-time-scale kinetics: A nonlinear master equation describing vibration-to-vibration relaxation. Z. Phys. Chem. 215, 233–252.

    CAS  Google Scholar 

  • DeGroot, M.H., 1975. Probability and Statistics. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Drew, D.A., 2001. A mathematical model for prokaryotic protein synthesis. Bull. Math. Biol. 63, 329–351.

    Article  PubMed  CAS  Google Scholar 

  • Elledge, S.J., 1996. Cell cycle checkpoints: Preventing an identity crisis. Science 274, 1664–1672.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., 2002. Stochastic gene expression in a single cell. Science 297, 1183–1186.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Feller, W., 1968. An Introduction to Probability Theory and Its Applications, Vols. 1 and 2. Wiley, New York.

  • Forger, D.B., Peskin, C.S., 2005. Stochastic simulation of the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 102, 321–324.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  CAS  Google Scholar 

  • Gillespie, D.T., 1992. A rigorous derivation of the chemical master equation. Physica A 188, 404–425.

    Article  CAS  ADS  Google Scholar 

  • Hasty, J., Collins, J.J., 2002. Translating the noise. Nat. Gen. 31, 13–14.

    Article  CAS  Google Scholar 

  • Heyd, A., Drew, D.A., 2003. A mathematical model for elongation of a peptide chain. Bull. Math. Biol. 65, 1095–1109.

    Article  PubMed  CAS  Google Scholar 

  • Jülicher, F., Bruinsma, R., 1998. Motion of RNA polymerase along DNA: A stochastic model. Biophys. J. 74, 1169–1185.

    PubMed  Google Scholar 

  • Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Z. Bar-Joseph, Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A., 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

    Google Scholar 

  • Lewis, J., 2003. Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, N., 1989. Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Mahaffy, J.M., Jorgensen, D.A., Vanderheyden, R.L., 1992. Oscillations in a model of repression with external control. J. Math. Biol. 30, 669–691.

    Article  PubMed  CAS  MATH  MathSciNet  Google Scholar 

  • McAdams, H.H., Arkin, A., 1999. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • McClure, W.R., 1980. Rate-limiting steps in RNA chain initiation. Proc. Natl. Acad. Sci. U.S.A. 77, 5634–5638.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Miller, O.L., Beatty, B.R., 1969. Portrait of a gene. J. Cell. Physiol. 74 (Suppl. 1), 225–232.

    Google Scholar 

  • Miller, O.L., Beatty, B.R., Hamkalo, B.A., Thomas, C.A., 1970. Electron microscopic visualization of transcription. Cold Spring Harb. Symp. Quant. Biol. 35, 505–512.

    CAS  Google Scholar 

  • Monk, N.A.M., 2003. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413.

    Article  PubMed  CAS  Google Scholar 

  • Nagatani, T., 2002. The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386.

    Article  CAS  ADS  Google Scholar 

  • Oppenheim, I., Shuler, K.E., Weiss, G.H., 1977. Stochastic Processes in Chemical Physics: The Master Equation. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ota, K., Yamada, T., Yamanishi, Y., Goto, S., Kanehisa, M., 2003. Comprehensive analysis of delay in transcriptional regulation using expression profiles. Genome Inform. 14, 302–303.

    Google Scholar 

  • Roussel, C.J., Roussel, M.R., 2001. Delay-differential equations and the model equivalence problem in chemical kinetics. Phys. Can. 57, 114–120.

    Google Scholar 

  • Roussel, M.R., 1996. The use of delay differential equations in chemical kinetics. J. Phys. Chem. 100, 8323–8330.

    Article  CAS  Google Scholar 

  • Schnitzer, M.J., Block, S.M., 1995. Statistical kinetics of processive enzymes. Cold Spring Harb. Symp. Quant. Biol. 60, 793–802.

    PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D.A., Byrne, J.H., 1998. Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274, C531–C542.

    PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D.A., Byrne, J.H., 1999. Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. Am. J. Physiol. 277, C777–C790.

    PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D.A., Byrne, J.H., 2000. Modeling transcriptional control in gene networks—Methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292.

    Article  PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D.A., Byrne, J.H., 2001. Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21, 6644–6656.

    PubMed  CAS  Google Scholar 

  • Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B., 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  • Stanley, H.E., 1971. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York.

    Google Scholar 

  • Stryer, L., 1988. Biochemistry, 3rd ed. W. H. Freeman, New York.

  • Svoboda, K., Mitra, P.P., Block, S.M., 1994. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. U.S.A. 91, 11782–11786.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tennyson, C.N., Klamut, H.J., Worton, R.G., 1995. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Tolić-Nørrelykke, S.F., Engh, A.M., Landick, R., Gelles, J., 2004. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J. Biol. Chem. 279, 3292–3299.

    Article  PubMed  CAS  Google Scholar 

  • Uptain, S.M., Kane, C.M., Chamberlin, M.J., 1997. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117–172.

    Article  PubMed  CAS  Google Scholar 

  • von Hippel, P.H., 1998. An integrated model of the transcription complex in elongation, termination, and editing. Science 281, 660–665.

    Article  PubMed  CAS  Google Scholar 

  • von Hippel, P.H., Pasman, Z., 2002. Reaction pathways in transcript elongation. Biophys. Chem. 101–102, 401–423.

  • Wang, H.-Y., Elston, T., Mogilner, A., Oster, G., 1998. Force generation in RNA polymerase. Biophys. J. 74, 1186–1202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Roussel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussel, M.R., Zhu, R. Stochastic kinetics description of a simple transcription model. Bull. Math. Biol. 68, 1681–1713 (2006). https://doi.org/10.1007/s11538-005-9048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9048-6

Keywords

Navigation