Skip to main content
Log in

Unique Reconstruction of Tree-Like Phylogenetic Networks from Distances Between Leaves

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a class of rooted acyclic directed graphs (called TOM-networks) is defined that generalizes rooted trees and allows for models including hybridization events. It is argued that the defining properties are biologically plausible. Each TOM-network has a distance defined between each pair of vertices. For a TOM-network N, suppose that the set X consisting of the leaves and the root is known, together with the distances between members of X. It is proved that N is uniquely determined from this information and can be reconstructed in polynomial time. Thus, given exact distance information on the leaves and root, the phylogenetic network can be uniquely recovered, provided that it is a TOM-network. An outgroup can be used instead of a true root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandelt, H.-J., Dress, A., 1986. Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7, 309–343.

    Article  MATH  MathSciNet  Google Scholar 

  • Bandelt, H.-J., Dress, A., 1992. Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242–252.

    Article  PubMed  Google Scholar 

  • Baroni, M., Semple, C., Steel, M., 2004. A framework for representing reticulate evolution. Anal. Combinat. 8, 391–408.

    Article  MATH  MathSciNet  Google Scholar 

  • Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  Google Scholar 

  • Felsenstein, J., 2004. Inferring Phylogenies. Sinauer, Sunderland, MA.

    Google Scholar 

  • Fitch, W.M., 1981. A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18, 30–37.

    Article  PubMed  Google Scholar 

  • Dan Gusfield, Gusfield, D., 1991. Efficient algorithms for inferring evolutionary history. Networks 21, 19–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Gusfield, D., Eddhu, S., Langley, C., 2004a. Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2, 173–213.

    Article  Google Scholar 

  • Dan Gusfield, Satish Eddhu, and Charles Langley, Gusfield, D., Eddhu, S., Langley, C., 2004b. The fine structure of galls in phylogenetic networks. INFORMS J. Comput. 16(4), 459–469.

    Article  MathSciNet  Google Scholar 

  • Hasegawa, M., Kishino, H., Yano, K., 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174.

    Article  PubMed  Google Scholar 

  • Hein, J., 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Hein, J., 1993. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405.

    Article  Google Scholar 

  • Huson, D.H., 1998. SplitsTree: A program for analyzing and visualizing evolutionary data. Bioinformatics 141, 68–73.

    Article  Google Scholar 

  • Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules. In: Osawa, S., Honjo, T. (Eds.), Evolution of Life: Fossils, Molecules, and Culture. Springer-Verlag, Tokyo, pp. 79–95.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  Google Scholar 

  • Li, W.-H., 1981. A simple method for construcing phylogenetic trees from distance matrices. Proc. Natl. Acad. Sci. U.S.A. 78, 1085–1089.

    Article  PubMed  MATH  Google Scholar 

  • Vladamir Makarenkov and Pierre Legendre. Makarenkov, V., Legendre, P., 2004. From a phylogenetic tree to a reticulated network. J. Comput. Biol. 11, 195–212.

    Article  PubMed  Google Scholar 

  • Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R., 2004. Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 13–23.

    Article  Google Scholar 

  • Nakhleh, L., Warnow, T., Randal Linder, C., 2004. Reconstructing reticulate evolution in species—Theory and practice. In: Bourne, P.E., Gusfield, D. (Eds.), Proceedings of the Eighth Annual International Conference on Computational Molecular Biology (RECOMB '04), March 27–31, 2004, San Diego, CA. ACM, New York, pp. 337–346.

  • Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  Google Scholar 

  • Sattath, S., Tversky, A., 1977. Additive similarity trees. Psychometrika 42, 319–345.

    Article  Google Scholar 

  • Lusheng Wang, Kaizhong Zhang, and Louxin Zhang. 2001. Wang, L., Zhang, K., Zhang, L., 2001. Perfect phylogenetic networks with recombination. J. Comput. Biol. 8, 69–78.

  • Willson, S.J., 2006. Unique solvability of certain hybrid networks from their distances. Ann. Combinat.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Willson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willson, S.J. Unique Reconstruction of Tree-Like Phylogenetic Networks from Distances Between Leaves. Bull. Math. Biol. 68, 919–944 (2006). https://doi.org/10.1007/s11538-005-9044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9044-x

Keywords

Navigation