Skip to main content
Log in

Stochastic models for mainland-island metapopulations in static and dynamic landscapes

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape; to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913–958, 2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that, under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing thatmainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopperBryodema tuberculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, D., McKane, A., 2002. Extinction dynamics in mainland-island metapopulations: An N-patch stochastic model. Bull. Math. Biol. 64, 913–958.

    Article  PubMed  Google Scholar 

  • Amarasekare, P., Possingham, H., 2001. Patch dynamics and metapopulation theory: The case of successional species. J. Theor. Biol. 209, 333–344.

    Article  PubMed  Google Scholar 

  • Barbour, A.D., 1974. On a functional central limit theorem for Markov population processes. Adv. Appl. Probab. 6, 21–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., 1976. Quasi-stationary distributions in Markov population processes. Adv. Appl. Probab. 8, 296–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., 1980a. Equilibrium distributions Markov population processes. Adv. Appl. Probab. 12, 591–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., 1980b. Density dependent Markov population processes. In: Jäger, W., Rost, H., Tautu, P. (Eds.), Biological Growth and Spread, Lecture Notes in Biomathematics 38. Springer, Berlin, pp. 36–49.

  • Brachet, S., Olivieri, I., Godelle, B., Klein, E., Frascaria-Lacoste, N., Gouyon, P.H., 1999. Dispersal and metapopulation viability in a heterogeneous landscape. J. Theor. Biol. 198, 479–495.

    Article  PubMed  Google Scholar 

  • Casagrandi, R., Gatto, M., 2000. Habitat destruction, environmental catastrophes, and metapopulation extinction. Theor. Pop. Biol. 61, 127–140.

    Article  Google Scholar 

  • Clancy, D., O'Neill, P.D., Pollett, P.K., 2001. Approximations for the long-term behaviour of an open-population epidemic model. Methodol. Comput. Appl. Probab. 3, 75–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunstan, F.D.J., Reynolds, J.F., 1978. Applications of stochastic processes to chemical reaction kinetics. Methods Operat. Res. 33, 105–119.

    Google Scholar 

  • Dunstan, F.D.J., Reynolds, J.F., 1981. Normal approximations for distributions arising in the stochastic approach to chemical reaction kinetics. J. Appl. Probab. 18, 263–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Ellner, S.P., Fussmann, G., 2003. Effects of successional dynamics on metapopulation persistence. Ecology 84, 882–889.

    Article  Google Scholar 

  • Feller, W., 1939. Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheor. 5, 11–40.

    Article  MathSciNet  Google Scholar 

  • Hanski, I.A., 1999. Metapopulation Ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Hanski, I.A., Gaggiotti, O.E. (Eds.), 2004. Ecology Genetics and Evolution of Metapopulations. Academic Press, London.

    Google Scholar 

  • Harrison, S., 1991. Local extinction in a metapopulation context: An empirical evaluation. Biol. J. Linnean Soc. 42, 73–88.

    Article  Google Scholar 

  • Hastings, A., 2003. Metapopulation persistence with age-dependent disturbance or succession. Science 301, 1525–1526.

    Article  PubMed  MathSciNet  Google Scholar 

  • Hess, G.R., 1996. Linking extinction to connectivity and habitat destruction in metapopulation models. Am. Nat. 148, 226–236.

    Article  Google Scholar 

  • Johnson, M.P., 2000. The influence of patch demographics on metapopulations, with particular reference to successional landscapes. Oikos 88, 67–74.

    Article  Google Scholar 

  • Keymer, J.E., Marquet, P.A., Velasco-Hernandez, J.X., Levin, S.A., 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. Am. Nat. 156, 478–494.

    Article  Google Scholar 

  • Kingman, J.F.C., 1969. Markov population processes. J. Appl. Probab. 6, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Kryscio, R.J., Lefèvre, C., 1989. On the extinction of the S-I-S stochastic logistic epidemic. J. Appl. Probab. 4(26), 685–694.

    Article  Google Scholar 

  • Kurtz, T., 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtz, T., 1971. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, 344–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entom. Soc. Am. 15, 237–240.

    Google Scholar 

  • Levins, R.A., 1970. Extinction. Lect. Math. Life Sci. 2, 75–107.

    Google Scholar 

  • Nåsell, I., 1999a. On the quasi-stationary distribution of the stochastic logistic epidemic. Math. Biosci. 156, 21–40.

    Article  MATH  Google Scholar 

  • Nåsell, I., 1999b. On the time to extinction in recurrent epidemics. J. R. Stat. Soc. B 61(Part 2), 309–330.

    Google Scholar 

  • Parsons, R.W., Pollett, P.K., 1987. Quasistationary distributions for some autocatalytic reactions. J. Stat. Phys. 46, 249–254.

    Article  Google Scholar 

  • Pollett, P.K., 1990. On a model for interference between searching insect parasites. J. Aust. Math. Soc. Ser. B 32, 133–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollett, P.K., 2001. Diffusion approximations for ecological models. In: Ghassemi, F. (Ed.), Proceedings of the International Congress on Modelling and Simulation, Vol. 2, Modelling and Simulation Society of Australia and New Zealand, Canberra, Australia, pp. 843–848.

  • Pollett, P.K., Vassallo, A., 1992. Diffusion approximations for some simple chemical reaction schemes. Adv. Appl. Probab. 24, 875–893.

    Article  MathSciNet  MATH  Google Scholar 

  • Ross, J.V., 2004. Diffusion approximation for a metapopulation model with habitat dynamics. Submitted for publication.

  • Rubinstein, R.Y., Kroese, D.P., 2004. The Cross-Entropy Method: A unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Slater, L.J., 1966. Generalised hypergeometric functions. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Stelter, C., Reich, M., Grimm, V., Wissel, C., 1997. Modelling persistence in dynamic landscapes: Lessons from a metapopulation of the grasshopper Bryodema tuberculata. J. Anim. Ecol. 66(4), 508–518.

    Article  Google Scholar 

  • van Kampen, N.G., 1961. A power series expansion of the master equation. Can. J. Phys. 39, 551.

    Google Scholar 

  • van Kampen, N.G., 1981. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam.

    MATH  Google Scholar 

  • Verhulst, P.F., 1838. Notice sur la loi que la population suit dans son accroisement. Corr. Math. Phys. X, 113–121.

  • Weiss, G.H., 1972. Some approximate solutions to the discrete master equation. J. Stat. Phys. 6, 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J.V. Stochastic models for mainland-island metapopulations in static and dynamic landscapes. Bull. Math. Biol. 68, 417–449 (2006). https://doi.org/10.1007/s11538-005-9043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9043-y

KeywordS

Navigation