Skip to main content

Advertisement

Log in

Simple Stochastic Fingerprints Towards Mathematical Modeling in Biology and Medicine 2. Unifying Markov Model for Drugs Side Effects

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Most of present mathematical models for biological activity consider just the molecular structure. In the present article we pretend extending the use of Markov chain models to define novel molecular descriptors, which consider in addition other parameters like target site or biological effect. Specifically, this mathematical model takes into consideration not only the molecular structure but the specific biological system the drug affects too. Herein, a general Markov model is developed that describes 19 different drugs side effects grouped in eight affected biological systems for 178 drugs, being 270 cases finally. The data was processed by linear discriminant analysis (LDA) classifying drugs according to their specific side effects, forward stepwise was fixed as strategy for variables selection. The average percentage of good classification and number of compounds used in the training/predicting sets were 100/95.8% for endocrine manifestations, (18 out of 18)/(13 out of 14); 90.5/92.3% for gastrointestinal manifestations, (38 out of 42)/(30 out of 32); 88.5/86.5% for systemic phenomena, (23 out of 26)/(17 out of 20); 81.8/77.3% for neurological manifestations, (27 out of 33)/(19 out of 25); 81.6/86.2% for dermal manifestations, (31 out of 38)/(25 out of 29); 78.4/85.1% for cardiovascular manifestation, (29 out of 37)/(24 out of 28); 77.1/75.7% for breathing manifestations, (27 out of 35)/(20 out of 26) and 75.6/75% for psychiatric manifestations, (31 out of 41)/(23 out of 31). Additionally a back-projection analysis (BPA) was carried out for two ulcerogenic drugs to prove in structural terms the physical interpretation of the models obtained. This article develops a mathematical model that encompasses a large number of drugs side effects grouped in specifics biological systems using stochastic absolute probabilities of interaction Aπ k (j)) by the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

QSTR::

4.9pc Quantitative structure-toxicity relationships

MCH::

Markov chains

HIV::

Human immunodeficiency virus

MARCH-INSIDE::

Markovian chemicals in slico design

QSAR::

Quantitative structure-activity relationships

RNA::

Ribonucleic acid

LDA::

Linear discriminant analysis

BPA::

Back-Projection Analysis

OCWLI::

Optimization of correlation weights of local graph invari-ants

References

  • Briggs, J.M., Marrone, T.J., McCammon, J.A., 1996. Computational science new horizons and relevance to pharmaceutical design. Trends Cardiovasc. Med. 6, 198–203.

    Article  CAS  Google Scholar 

  • Cabrera, M.A., González, D.H., Teruel, C., Pla-Delfina, J.M., Bermejo del Val, M., 2002. A novel approach to determining physicochemical and absorption properties of 6-fluoroquinolone derivatives: experimental assessment. Eur. J. Pharm. Biopharm. 53, 317–325.

    Article  Google Scholar 

  • Cabrera, M.A., Bermejo, S., 2004. In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS–MODE approach. Bioorg. Med. Chem. 22, 5833–5843.

    Article  Google Scholar 

  • Chou, K.-C., 1993. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J. Biol. Chem. 268, 16938–16948.

    PubMed  CAS  Google Scholar 

  • Chou, K.C., 1997. Prediction and classification of -turn types. Biopolymers 42, 837.

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.-C., 2001. Prediction of signal peptides using scaled window. Peptides 22, 1973–1979.

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.-C., 2002. Prediction of protein signal sequences. Curr. Prot. Pept. Sci. 3, 615–622.

    Article  CAS  Google Scholar 

  • Cronin, M.T.D., Dearden, J.C., 1995. Prediction of aquatic toxicity. Quant. Struct.-Act. Relat. 4, 1–7.

    Google Scholar 

  • Cronin, M.T.D., 1998. Computer aided prediction of drug toxicity in high throughput screening. Pharm. Pharmacol. Commun. 4, 157–163.

    CAS  Google Scholar 

  • Dearden, J.C., Cronin, M.T.D., Dobbs, A.J., 1995. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Chemosphere 31, 2521– 2528.

    Article  PubMed  CAS  Google Scholar 

  • Di Francesco, V., Munson, P.J., Garnier, J., 1999. FORESST: fold recognition from secondary structure predictions of proteins. Bioinformatics, 15, 131.

    Article  PubMed  Google Scholar 

  • Estrada, E., 2001. Generalization of topological indices. Chem. Phys. Lett. 336, 248–252.

    Article  CAS  Google Scholar 

  • Franke, R., 1984. Theoretical Drug Design Methods, Elsevier Amsterdam.

    Google Scholar 

  • Freund, J.A., Poschel, T., 2000. Stochastic processes in physics, chemistry, and biology. In: Lecture Notes of Physics Springer-Verlag (Eds.), Berlin, Germany.

    Google Scholar 

  • Garcia, A.G., Horga, de la Parte, J.F., 1994. Reacciones adversas a los fármacos. In, Indice de especialidades farmacéuticas. Prescripcion racional de fármacos. INTERCON. Ed. Editores Médicos S.A. EDIMSA. Madrid. p. 155–173.

  • Gnedenko, B., 1978. The theory of probability. Mir Publishers (Ed.), Moscow. pp. 107– 112.

    Google Scholar 

  • González, M.P., Morales, A.H., Molina, R., García, J.F., 2004a. A topological sub-structural approach of the mutagenic activity in dental monomers.1. Aromatic epoxides. Polymer 45, 2773–2779.

    Article  Google Scholar 

  • González, M.P., Morales, A.H., González-Díaz, H., 2004b. A TOPS-MODE approach to predict permeability coefficients. Polymer 45, 2073–2079.

    Article  Google Scholar 

  • González, M.P., González-Díaz, H., Cabrera-Pérez, M.A., Molina, R.R., 2004c. A novel approach to predict a toxicological property of aromatic compounds in the Tetrahymena pyriformis. Bioorg. Med. Chem. 12, 735–744.

    Article  Google Scholar 

  • González-Díaz, H., Olazábal, E., Castañedo, N., Hernádez, S.I., Morales, A., Serrano, H.S., González, J., Ramos de A., R., 2002a. Markovian chemicals ‘in silico’ design (MARCH-INSIDE), a promising approach for computer aided molecular design II: experimental and theoretical assessment of a novel method for virtual screening of fasciolicides. J. Mol. Mod., 8, 237–245.

    Article  Google Scholar 

  • González-Díaz, H., Ramos de A., R., Uriarte, E., 2002b. In Silico Markovian Bioinformatics for Predicting 1Hα-NMR Chemical Shifts in mouse Epidermis Growth Factor (mEGF). Online J. Bioinf. 1, 83–95.

    Google Scholar 

  • González-Díaz, H., Gia, O., Uriarte, E., Hernádez, I., Ramos, R., Chaviano, M., Seijo, S., Castillo, J.A., Morales, L., Santana, L., Akpaloo, D., Molina, E., Cruz-Monteagudo, M., Torres, L.A., Cabrera, M.A., 2003a. Markovian chemicals ‘in silico’ design (MARCH-INSIDE), a promising approach for computer-aided molecular design I: discovery of anticancer compounds. J. Mol. Mod. 9, 395–407.

    Article  Google Scholar 

  • González-Díaz, H., Hernández, S.I., Uriarte, E., Santana, L., 2003b. Symmetry Considerations in Markovian Chemicals “in silico” Design (MARCH-INSIDE) I: Central Chirality Codification, Classification of ACE inhibitors and Prediction of σ-Receptor Antagonist Activities. Comput. Biol. Chem. 27, 217–227.

    Article  Google Scholar 

  • González-Díaz, H., Ramos de A., R., Molina, R.R., 2003c. Vibrational Markovian modelling of footprints after the interaction of antibiotics with the packaging region of HIV Type 1. Bull. Math. Biol. 65, 991–1002.

    Article  Google Scholar 

  • González-Díaz, H., Ramos de A., R., Molina, R.R., 2003d. Markovian negentropies in bioinformatics. 1. A picture of footprints after the interaction of the HIV-1-ψ-RNA packaging region with drugs. Bioinformatics 19, 2079–2087.

    Article  Google Scholar 

  • González-Díaz, H., Marrero, Y., Hernández, I., Bastida, I., Tenorio, E., Nasco, O., Uriarte, E., Castañedo, N.C., Cabrera-Pérez, M.A., Aguila, E., Marrero, O., Morales, A., González, M.P., 2003e. An Alternative “In Silico” Technique for Chemical Research in Toxycology. 1. Prediction of Chemically-induced Agranulocytosis. Chem. Res. Tox. 16, 1318–1327.

    Article  Google Scholar 

  • González-Díaz, H., Uriarte, E., Ramos de A., R., 2004a. Predicting stability of Arc repressor mutants with protein stochastic moments. Bioorg. Med. Chem. 13, 323–331.

    Article  Google Scholar 

  • González-Díaz, H., Molina, R.R., Uriarte, E., 2004b. Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorg. Med. Chem. Lett. 14, 4691–4695.

    Article  Google Scholar 

  • González-Díaz, H., Molina, R.R., Uriarte, E., 2004c. Stochastic molecular descriptors for polymers. 1. Modelling the properties of icosahedral viruses with 3D-Markovian negentropies. Polymer 45, 3845–3853.

    Article  Google Scholar 

  • González-Díaz, H., Bastida, I., Castañedo, N., Nasco, O., Olazabal, E., Morales, A., Serrano, H.S., Ramos de A., R., 2004d. Simple stochastic fingerprints towards mathematical modelling in biology and medicine. 1. The treatment of coccidiosis. Bull. Math. Biol. 66, 1285–1311.

    Article  Google Scholar 

  • Goodman, L.S., Gilman, A., 2001. Principles of Therapeutics. In: The pharmacological basis of therapeutics. Tenth Edition Eds: Mc Graw Hill, New York.

    Google Scholar 

  • Gund, P., Shen, T.Y., 1977. A model for the prostaglandin synthetase cyclooxygenation site and its inhibition by antiinflammatory arylacetic acids. J.Med. Chem. 20, 1146–1152.

    Article  PubMed  CAS  Google Scholar 

  • Hua, S., Sun, Z., 2001. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, T.J., Park, J., 1995. Fold recognition and ab initio structure predictions using Hidden Markov models and β-strand pair potential. Proteins Struc. Funct. Genet. 23, 398–402.

    Article  CAS  Google Scholar 

  • HyperChem, 2002. HyperChem ReleaseTM 7.03 for Windows®, Molecular Modeling System, Copyright 2002 Hypercube, Inc.

  • Kowalski, R.B., Wold, S., 1982. Pattern recognition in chemistry. In: Krishnaiah, P.R., Kanal, L.N. (Eds.), Handbook of Statistics North Holland Publishing Company, Amsterdam, pp. 673–697.

    Google Scholar 

  • Krogh, A., Brown, M., Mian, I.S., Sjeander, K., Haussler, D., 1994. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501.

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi, H., Taylor, J., Ramdsen, C., 1990. Quantitative drug design. In, Comprehensive Medicinal Chemistry. Ed. C. Hansch. Pergamon. (1990). vol. 4, pp. 589.

  • Lewis, D.E.V., 1992. Computer assisted methods in the evaluation of chemical toxicity. In: Lipkowitz, K.B., Boyd, D.B. (Eds.), Reviews in Computational Chemistry, vol. 3. VCH Publishers, New York, pp. 173–222.

    Google Scholar 

  • Lutz, M.W., Menius, J.A., Laskody, R.G., Domanico, P.L., Goetz, A.G., Saussy, D.L., Rimele, T., 1996. Statistical considerations in High Throughput Screening. Network Science 2, Issue 9, September.

  • Marrero-Ponce, Y., González-Díaz, H., Romero-Zaldivar, V., Torrens, F., Castro, E.A., 2004a. 3D-Chiral quadratic indices of the ‘molecular pseudograph atom adjacency matrix’ and their application to central chirality codification: classification of ACE inhibitors and prediction of σ-receptor agonist activities. Bioorg. Med. Chem. 12, 5331.

    Article  CAS  Google Scholar 

  • Marrero-Ponce, Y., Montero-Torres, A., Romero-Zaldivar, C., Iyarreta-Veitía, M., Mayon-Peréz, M., García-Sánchez, R., 2004b. Non-Stochastic and Stochastic Linear Indices of the “Molecular Pseudograph's Atom Adjacency Matrix”: Application to “in silico” Studies for the Rational Discovery of New Antimalarial Compounds. Bioorg. Med. Chem. doi: 10.1016/j.bmc.2004.11.008.

  • Marrero-Ponce, Y., 2004a. Linear Indices of the “Molecular Pseudograph's Atom Adjacency Matrix”: Definition, Significance-Interpretation and Application to QSAR Analysis of Flavone Derivatives as HIV-1 Integrase Inhibitors. J. Chem. Inf. Comput. Sci. 44, 2010– 2026.

    Article  CAS  Google Scholar 

  • Marrero-Ponce, Y., 2004b. Total and local (atom and atom type) molecular quadratic indices: significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications. Bioorg. Med. Chem. 12, 6351–6369.

    Article  CAS  Google Scholar 

  • Morales, A.H., González, M.P., Rieumont, J.B., 2004. TOPS-MODE approach to predict mutagenicity in dental monomers. Polymer 45, 2045–2050.

    Article  Google Scholar 

  • Ramos de, A.R., González Díaz, H., Molina, R.R., González, M.P., Uriarte, E., 2004a. Stochastic-based descriptors studying peptides biological properties: modeling the bitter tasting threshold of dipeptides. Bioorg. Med. Chem., 12, 4815–4822.

    Article  Google Scholar 

  • Ramos de, A.R., González Díaz, H., Molina, R.R., Uriarte, E., 2004b. Markovian Backbone Negentropies: Molecular Descriptors for Protein Research. I. Predicting Protein Stability in Arc Repressor Mutants. Proteins Struct. Func. Bioinf. 56, 715–723.

    Article  Google Scholar 

  • Roberts, D.W., 1987. An analysis of published data on fish toxicity of nitrobenzenes and aniline derivatives, In: Kaiser, K.L.E. (Ed.), QSAR in Environmental Toxicology-II. D. Raidel, Dordrecht, The Netherlands, pp. 295–308.

    Google Scholar 

  • STATISTICA, 2001. for Windows release 6.0. Statsoft Inc.

  • Stief, N., Baumann, K., 2003. Mapping Property Distributions of Molecular Surfaces: algorithm and Evaluation of a Novel 3D Quantitative Structure-Activity Relationship Technique. J. Med. Chem. 46, 1390–1407.

    Article  Google Scholar 

  • Todeschini, R., Consonni, V., 2000. Handbook of Molecular Descriptors. Wiley VCH, Weinheim, Germany.

    Google Scholar 

  • Toropov, A.A., Toropova, A.P., 2001. Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants. J. Mol. Struct. (Theochem). 538, 287–293.

    Article  CAS  Google Scholar 

  • Toropov, A.A., Toropova, A.P., 2002. Modeling of acyclic carbonyl compounds normal boiling points by correlation weighting of nearest neighboring codes. J. Mol. Struct. (Theochem). 581, 11–15.

    Article  CAS  Google Scholar 

  • Toropov, A.A., Toropova, A.P., 2003. QSPR modeling of alkanes properties based on graph of atomic orbitals. J. Mol. Struct. (Theochem). 637, 1–10.

    Article  CAS  Google Scholar 

  • Toropov, A.A., Benfenati, E., 2004. QSAR modelling of aldehyde toxicity by means of optimisation of correlation weights of nearest neighbouring codes. J. Mol. Struct. (Theochem). 676, 165–169.

    Article  CAS  Google Scholar 

  • Van Waterbeemd, H., 1995. Discriminant analysis for activity prediction. In: Manhnhold, R., Krogsgaard-Larsen, Timmerman, H. (Eds.), Method and Principles in Medicinal Chemistry, vol 2. Chemometric methods in molecular design”. Ed, H. Van Waterbeemd, VCH, Weinhiem, pp 265–282.

    Google Scholar 

  • Villa, A., Zangi, R.,Pieffet, G., Mark, A.E., 2003. Sampling and convergence in free energy calculations of protein-ligand interactions: the binding of triphenoxypyridine derivatives to factor Xa and trypsin. J Comput. Aid. Mol. Des., 17, 673-686.

    Article  CAS  Google Scholar 

  • Vorodovsky, M., Koonin, E.V., Rudd, K.E., 1994. New genes in old sequence: a strategy for finding genes in the bacterial genome. Trends Biochem. Sci. 19, 309.

    Article  Google Scholar 

  • Vorodovsky, M., Macininch, J.D., Koonin, E.V., Rudd, K.E., Médigue, C., Danchin, A., 1995. TI detection of new genes in a bacterial genome using Markov models for three gene classes. Nuc. Ac. Res. 23, 3554.

    Google Scholar 

  • Wess, G., 1996. Challenges for medicinal chemistry. Drug Discovery Today 1, 529–532.

    Article  Google Scholar 

  • Yuan, Z., 1999. Prediction of protein subcellular location using Markov chain models. FEBS. Lett. 451, 23–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto González-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Monteagudo, M., González-Díaz, H. & Uriarte, E. Simple Stochastic Fingerprints Towards Mathematical Modeling in Biology and Medicine 2. Unifying Markov Model for Drugs Side Effects. Bull. Math. Biol. 68, 1527–1554 (2006). https://doi.org/10.1007/s11538-005-9013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9013-4

Keywords

Navigation