Skip to main content
Log in

Cellular Modelling of Secondary Radial Growth in Conifer Trees: Application to Pinus Radiata (D. Don)

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2007

Abstract

The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, P.W., Brain, P., Powers, S.J., 2002. Estimation of directional division frequencies in vascular cambium and in marginal meristematic cells of plants. Cell Prolif. 35, 49–68.

    Article  PubMed  Google Scholar 

  • Bannan, M.W., 1950. The frequency of anticlinal divisions in fusiform cambial cells of Chamaecyparis. Am. J. Bot. 37, 511–519.

    Article  Google Scholar 

  • Bannan, M.W., 1955. The vascular cambium of and radial growth of Thuja occidentalis. Can. J. Bot. 33, 113–138.

    Article  Google Scholar 

  • Cominetti, R., Padilla, F., San Martín, J., 2002. Field methodology for reconstruction of a Pinus radiata log. NZ J. Forestry Sci. 32(3), 309–321.

    Google Scholar 

  • Estelle, M., 1998. Polar auxin transport: New support for an old model. Plant Cell 10, 1775–1778.

    Article  PubMed  Google Scholar 

  • Forest, L., San Martin, J., Padilla, F., Chassat, F., Giroud, F., Demongeot, J., 2004. Morphogenetic processes: Application to cambial growth dynamics. Acta Biotheor. 52(4), 415–438.

    Article  PubMed  Google Scholar 

  • Friml, J., Wisniewska, J., Benkova, E., Mendgen, K., Palme, K., 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809.

    PubMed  Google Scholar 

  • Funada, R., 1990. Distribution of indole-3-acetic acid and compression wood formation. Holzforschung 44, 331–334.

    Article  Google Scholar 

  • Harris, J.M., 1991. Structure of wood and bark. In: Kininmonth, J., Whiteside, I. (Eds.), Properties and uses of New Zealand Radiata Pine. Vol. 1. Wood properties, Chaps. 2 and 3. New Zealand Ministry of Forestry. Forest Research Institute.

  • Kramer, E.M., 2001. A mathematical model of auxin-mediated radial growth in trees. J. Theor. Biol. 208, 387–397.

    Article  PubMed  Google Scholar 

  • Kramer, E.M., 2002. A mathematical model of pattern formation in the vascular cambium of trees. J. Theor. Biol. 216, 147–158.

    Article  PubMed  Google Scholar 

  • Larson, P.R., 1994. The Vascular Cambium. Development and Structure. Springer-Verlag, Berlin, p. 725.

  • Ljung, K., Bhalerao, R., Sandberg, G., 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465–474.

    Article  PubMed  Google Scholar 

  • Padilla, F., 2001. Estudio de la deformación del fuste causada por polilla del brote rhyacionia buoliana en Pinus radiata en la décima región. Memoria de Ingeniero forestal. Facultad de Ciencias Forestales. Universidad de Chile.

  • Schrader, J., Baba, K., May, S.T., Palme, K., Bennett, M., Bhalerao, R.P., Sandberg, G., 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. 100, 10096–10101.

    Article  PubMed  Google Scholar 

  • Smith, G.S., 2001. Plant cell division: building walls in the right place. Nat. Rev. Mol. Cell Biol. 2, 33–39.

    Article  PubMed  Google Scholar 

  • Thom, R., 1972. Stabilité structurelle et morphogenèse. Essai d'une théorie générale des modèles. W. A. Benjamin, Inc, Massachusetts.

  • Uggla, C., Magel, E., Moritz, T., Sunderg, B., 2001. Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine. Plant Physiol. 125, 2029–2039.

    Article  PubMed  Google Scholar 

  • Uggla, C., Mellerowicz, E.J., Sundberg, B., 1998. Indole-3-acetic acid controls cambial growth in Pinus sylvestris (L.) by signalling. Plant Physiol. 117, 113–121.

    Article  PubMed  Google Scholar 

  • Watanabe, U., Minoru, M., Norimoto, M., 2002. Transverse young's moduli and cell shapes in coniferous early wood. Holzforschung 56, 1–6.

    Article  Google Scholar 

  • Zimmermann, M., Brown, C., 1971. Trees: Structure and Function. Springer-Verlag,. New York, p. 336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11538-006-9157-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, L., Demongeot, J. Cellular Modelling of Secondary Radial Growth in Conifer Trees: Application to Pinus Radiata (D. Don). Bull. Math. Biol. 68, 753–784 (2006). https://doi.org/10.1007/s11538-005-9004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9004-5

Keywords

Navigation