Skip to main content
Log in

Clinical Implications of Cytotoxic T Lymphocyte Antigen-4 Expression on Tumor Cells and Tumor-Infiltrating Lymphocytes in Extrahepatic Bile Duct Cancer Patients Undergoing Surgery Plus Adjuvant Chemoradiotherapy

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

There currently is only limited knowledge on the role of tumor-specific immunity in cholangiocarcinoma.

Objective

This study evaluated the clinical implications of cytotoxic T lymphocyte antigen-4 (CTLA-4) expression levels and CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) in extrahepatic bile duct (EHBD) cancer.

Patients and Methods

Immunohistochemistry of CTLA-4, CD4, and CD8 was performed for 77 EHBD cancer patients undergoing surgery plus adjuvant chemoradiotherapy. CTLA-4 expression on tumor cells and TILs were assessed by using H-scores and the proportion of CTLA-4+ lymphocytes, respectively.

Results

With optimal cutoff values determined by a maximal chi-square method with overall survival (OS) data, patients with CTLA-4 H-score >70 and a proportion of CTLA-4+ TILs >0.15 showed higher mean density of CD8+ and CD4+ TILs, respectively (P = 0.025 for CD8+ and P = 0.055 for CD4+ TILs). The high CTLA-4 H-score level was associated with prolonged OS and disease-free interval (DFI) (P = 0.025 and 0.004, respectively). With differential levels of CTLA-4 H-score according to hilar and non-hilar locations (high rate 32 vs. 68%, respectively; P = 0.013), an exploratory subgroup analysis demonstrated that the associations between the CTLA-4 expression and OS and DFI were confined to hilar tumors (P = 0.003 and <0.001, respectively), but not to non-hilar ones (P = 0.613 and 0.888, respectively).

Conclusions

This study demonstrates a potential prognostic relevance of CTLA-4 expression in EHBD cancer. We suggest a differential survival impact of the CTLA-4 expression level according to different tumor locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis. 2008;12:131–50.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Bile duct cancer (cholangiocarcinoma). 2016. http://www.cancer.org/acs/groups/cid/documents/webcontent/003084-pdf.pdf. Accessed 29 Sept 2016.

  3. Park JH, Choi EK, Ahn SD, et al. Postoperative chemoradiotherapy for extrahepatic bile duct cancer. Int J Radiat Oncol Biol Phys. 2011;79:696–704.

    Article  CAS  PubMed  Google Scholar 

  4. Kim MY, Kim JH, Kim Y, Byun SJ. Postoperative radiotherapy appeared to improve the disease free survival rate of patients with extrahepatic bile duct cancer at high risk of loco-regional recurrence. Radiat Oncol J. 2016;34:297–304.

  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alegre ML, Noel PJ, Eisfelder BJ, et al. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol. 1996;157:4762–70.

    CAS  PubMed  Google Scholar 

  7. van der Merwe PA, Bodian DL, Daenke S, et al. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185:393–403.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brunner MC, Chambers CA, Chan FK, et al. CTLA-4-mediated inhibition of early events of T cell proliferation. J Immunol. 1999;162:5813–20.

    CAS  PubMed  Google Scholar 

  9. Kaufman KA, Bowen JA, Tsai AF, et al. The CTLA-4 gene is expressed in placental fibroblasts. Mol Hum Reprod. 1999;5:84–7.

    Article  CAS  PubMed  Google Scholar 

  10. Laurent S, Carrega P, Saverino D, et al. CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol. 2010;71:934–41.

    Article  CAS  PubMed  Google Scholar 

  11. Salvi S, Fontana V, Boccardo S, et al. Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2012;61:1463–72.

    Article  CAS  PubMed  Google Scholar 

  12. Yu H, Yang J, Jiao S, et al. Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother. 2015;64:853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mao H, Zhang L, Yang Y, et al. New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets. 2010;10:728–36.

    Article  CAS  PubMed  Google Scholar 

  14. Goeppert B, Frauenschuh L, Zucknick M, et al. Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br J Cancer. 2013;109:2665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim YJ, Koh J, Kim K, et al. High ratio of programmed cell death protein 1 (PD-1)(+)/CD8(+) tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother Oncol. 2015;117:165–70.

    Article  CAS  PubMed  Google Scholar 

  16. Hothorn T, Lausen B. On maximally selected rank statistics. R News. 2002;2:3–5.

    Google Scholar 

  17. Boulesteix AL. Maximally selected chi-square statistics for ordinal variables. Biom J. 2006;48:451–62.

    Article  PubMed  Google Scholar 

  18. Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comput Stat Data Anal. 2003;43:121–37.

    Article  Google Scholar 

  19. Budczies J, Klauschen F, Sinn BV, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE. 2012;7:e51862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49:2233–42.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper WA, Tran T, Vilain RE, et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer. 2015;89:181–8.

    Article  PubMed  Google Scholar 

  22. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity. 1997;7:885–95.

    Article  CAS  PubMed  Google Scholar 

  24. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999;11:483–93.

    Article  CAS  PubMed  Google Scholar 

  25. Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19:4917–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cadamuro M, Morton SD, Strazzabosco M, Fabris L. Unveiling the role of tumor reactive stroma in cholangiocarcinoma: an opportunity for new therapeutic strategies. Transl Gastrointest Cancer. 2013;2:130–44.

    CAS  Google Scholar 

  27. Harada K, Nakanuma Y. Cholangiocarcinoma with respect to IgG4 reaction. Int J Hepatol. 2014;2014:803876.

    PubMed  PubMed Central  Google Scholar 

  28. Weber J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12:864–72.

    Article  CAS  PubMed  Google Scholar 

  29. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.

    PubMed  PubMed Central  Google Scholar 

  30. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26:5630–7.

    Article  PubMed  Google Scholar 

  31. Lin YC, Mahalingam J, Chiang JM, et al. Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Int J Cancer. 2013;132:1341–50.

    Article  CAS  PubMed  Google Scholar 

  32. Erfani N, Mehrabadi SM, Ghayumi MA, et al. Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer. 2012;77:306–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyubo Kim.

Ethics declarations

Funding

None

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Yu Jin Lim and Jaemoon Koh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOCX 298 kb)

Supplementary Table 1

(DOCX 18 kb)

Supplementary Table 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.J., Koh, J., Kim, K. et al. Clinical Implications of Cytotoxic T Lymphocyte Antigen-4 Expression on Tumor Cells and Tumor-Infiltrating Lymphocytes in Extrahepatic Bile Duct Cancer Patients Undergoing Surgery Plus Adjuvant Chemoradiotherapy. Targ Oncol 12, 211–218 (2017). https://doi.org/10.1007/s11523-016-0474-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-016-0474-1

Keywords

Navigation