Skip to main content
Log in

Distance Dependence of Metal-Enhanced Fluorescence

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In recent years both the mechanism and applications of metal-enhanced fluorescence (MEF) have attracted significant attention, yet many fundamental aspects of MEF remain unanswered or addressed. In this study, we address a fundamental aspect of MEF. Using fluorescein-labeled different length DNA scaffolds, covalently bound to silver nanodeposits, we have experimentally measured the distance dependence of the MEF effect. The enhanced fluorescence signatures, i.e., MEF, follow quite closely the theoretical decay of the near-field of the nanoparticles, calculated using finite difference time domain approaches. This implies that the mechanisms of MEF are partially underpinned by the magnitude and distribution of the electric field around near-field nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aslan K, Geddes CD (2010) In: Geddes CD (ed) Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. Wiley, Hoboken, NJ, pp 1–24

    Google Scholar 

  2. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  3. Geddes CD (2010) Metal-enhanced fluorescence. Wiley, Hoboken, NJ

    Book  Google Scholar 

  4. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  5. Zhang Y, Dragan A, Geddes CD (2009) Wavelength dependence of metal-enhanced fluorescence. J Phys Chem C 113(28):12095–12100

    Article  CAS  Google Scholar 

  6. Kummerlen J et al (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80(5):1031–1046

    Article  Google Scholar 

  7. Ray K, Badugu R, Lakowicz JR (2007) Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem Mater 19(24):5902–5909

    Article  CAS  Google Scholar 

  8. Ray K, Badugu R, Lakowicz JR (2007) Sulforhodamine adsorbed Langmuir–Blodgett layers on silver island films: effect of probe distance on the metal-enhanced fluorescence. J Phys Chem C Nanomater Interface 111(19):7091–7097

    CAS  Google Scholar 

  9. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70(18):3898–3905

    Article  CAS  Google Scholar 

  10. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002

    Article  Google Scholar 

  11. Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1):017402

    Article  Google Scholar 

  12. Aslan K et al (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  Google Scholar 

  13. D’Agostino S et al (2009) Enhanced fluorescence by metal nanospheres on metal substrates. Opt Lett 34(15):2381–2383

    Article  Google Scholar 

  14. Dragan AI et al (2010) Metal-enhanced picogreen fluorescence: application for double-stranded DNA quantification. Anal Biochem 396(1):8–12

    Article  CAS  Google Scholar 

  15. Mackowski S et al (2008) Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett 8(2):558–564

    Article  CAS  Google Scholar 

  16. Matveeva EG et al (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363(2):239–245

    Article  CAS  Google Scholar 

  17. Pribik R et al (2009) Metal-enhanced fluorescence (MEF): physical characterization of silver-island films and exploring sample geometries. Chem Phys Lett 478(1–3):70–74

    Article  CAS  Google Scholar 

  18. Dragan AI et al (2011) Two-color, 30 second microwave-accelerated metal-enhanced fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology. J Immunol Methods 366(1–2):1–7

    Article  CAS  Google Scholar 

  19. Pernice WHP (2010) Finite-difference time-domain methods and material models for the simulation of metallic and plasmonic structures. J Comput Theor Nanosci 7(1):1–14

    Article  CAS  Google Scholar 

  20. Stoermer RL, Keating CD (2006) Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency. J Am Chem Soc 128(40):13243–13254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank MedImmune Inc., for financial support as well as the University of Maryland Baltimore County for salary contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragan, A.I., Bishop, E.S., Casas-Finet, J.R. et al. Distance Dependence of Metal-Enhanced Fluorescence. Plasmonics 7, 739–744 (2012). https://doi.org/10.1007/s11468-012-9366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9366-0

Keywords

Navigation