Skip to main content
Log in

Weak convergence to Rosenblatt sheet

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We study the problem of the approximation in law of the Rosenblatt sheet. We prove the convergence in law of two families of process to the Rosenblatt sheet: the first one is constructed from a Poisson process in the plane and the second one is based on random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry P, Pipiras V. Wavelet-based synthesis of the Rosenblatt process. Signal Process, 2006, 86: 2326–2339

    Article  MATH  Google Scholar 

  2. Albin J M P. On extremal theory for self similar processes. Ann Probab, 1998, 26: 743–793

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardina X, Florit C. Approximation in law to the d-parameter fractional Brownian sheet based on the functional invariance principle. Rev Mat Iberoam, 2005, 21: 1037–1052

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardina X, Jolis M. Weak approximation of the Brownian sheet from the Poisson process in the plane. Bernoulli, 2000, 6(4): 653–665

    Article  MATH  MathSciNet  Google Scholar 

  5. Bardina X, Jolis M, Tudor C A. Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes. Statist Probab Lett, 2003, 65: 317–329

    Article  MATH  MathSciNet  Google Scholar 

  6. Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic Calculus for fBm and Applications. New York: Springer-Verlag, 2008

    Google Scholar 

  7. Bickel P, Wichura M. Convergence criteria for multiparamenter stochastic process and some applications. Ann Math Statist, 1971, 42: 1656–1670

    Article  MATH  MathSciNet  Google Scholar 

  8. Cairoli R, Walsh J. Stochastic integrals in the plane. Acta Math, 1975, 134: 111–183

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen C, Sun L, Yan L. An approximation to the Rosenblatt process using martingale differences. Statist Probab Lett, 2012, 82: 748–757

    Article  MATH  MathSciNet  Google Scholar 

  10. Chronopoulou A, Tudor C, Viens F. Variations and Hurst index estimation for a Rosenblatt process using longer filters. Electron J Stat, 2009, 3: 1393–1435

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai H. Convergence in law to operator fractional Brownian motions. J Theoret Probab, 2013, 26: 676–696

    Article  MATH  MathSciNet  Google Scholar 

  12. Dobrushin R L, Major P. Non-central limit theorems for non-linear functionals of Gaussian fields. Z Wahrschein-lichkeitstheor Verwandte Geb, 1979, 50: 27–52

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall P, Hardle W, Kleinow T, Schmidt P. Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient. Stat Inference Stoch Process, 2000, 3: 263–276

    Article  MATH  MathSciNet  Google Scholar 

  14. Leonenko N N, Ahn V V. Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J Appl Math Stoch Anal, 2001, 14: 27–46

    Article  MATH  Google Scholar 

  15. Leonenko N N, Woyczynski W. Scaling limits of solutions of the heat equation for singular non-Gaussian data. J Stat Phys, 1998, 91: 423–438

    Article  MATH  MathSciNet  Google Scholar 

  16. Li Y, Dai H. Approximations of fractional Brownian motion. Bernoulli, 2011, 17: 1195–1216

    Article  MATH  MathSciNet  Google Scholar 

  17. Maejima M, Tudor C A. Wiener integrals with respect to the Hermite process and a non central limit theorem. Stoch Anal Appl, 2007, 25: 1043–1056

    Article  MATH  MathSciNet  Google Scholar 

  18. Maejima M, Tudor C A. Selfsimilar processes with stationary increments in the second Wiener chaos. Probab Math Statist, 2012, 32: 167–186

    MATH  MathSciNet  Google Scholar 

  19. Maejima M, Tudor C A. On the distribution of the Rosenblatt process. Statist Probab Lett, 2013, 83: 1490–1495

    Article  MATH  MathSciNet  Google Scholar 

  20. Mishura Y. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Math, Vol 1929. Berlin: Springer, 2008

    MATH  Google Scholar 

  21. Pipiras V, Taqqu M S. Regularization and integral representations of Hermite processes. Statist Probab Lett, 2010, 80: 2014–2023

    Article  MATH  MathSciNet  Google Scholar 

  22. Shen G, Ren Y. Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J Korean Statist Soc, 2014, 44: 123–133

    Article  MathSciNet  Google Scholar 

  23. Shieh N -R, Xiao Y. Hausdorff and packing dimensions of the images of random fields. Bernoulli, 2010, 16: 926–952

    Article  MATH  MathSciNet  Google Scholar 

  24. Sottinen T. Fractional Brownian motion, random walks and binary market models. Finance Stoch, 2001, 5: 343–355

    Article  MATH  MathSciNet  Google Scholar 

  25. Stroock D. Topics in Stochastic Differential Equations. Berlin: Springer-Verlag, 1982

    MATH  Google Scholar 

  26. Taqqu M. Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z Wahrschein-lichkeitstheor Verwandte Geb, 1975, 31: 287–302

    Article  MATH  MathSciNet  Google Scholar 

  27. Taqqu M. Convergence of integrated processes of arbitrary Hermite rank. Z Wahrscheinlichkeitstheor Verwandte Geb, 1979, 50: 53–83

    Article  MATH  MathSciNet  Google Scholar 

  28. Torres S, Tudor C. Donsker type theorem for the Rosenblatt process and a binary market model. Stoch Anal Appl, 2009, 27: 555–573

    Article  MATH  MathSciNet  Google Scholar 

  29. Tudor C. Weak convergence to the fractional Brownian sheet in Besov spaces. Bull Braz Math Soc, 2003, 34: 389–400

    Article  MATH  MathSciNet  Google Scholar 

  30. Tudor C. Analysis of the Rosenblatt process. ESAIM Probab Stat, 2008, 12: 230–257

    Article  MATH  MathSciNet  Google Scholar 

  31. Tudor C. Analysis of Variations for Self-similar Processes. Berlin: Springer, 2013

    Book  MATH  Google Scholar 

  32. Tudor C, Viens F. Variations and estimators for the selfsimilarity order through Malliavin calculus. Ann Probab, 2009, 37: 2093–2134

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang Z, Yan L, Yu X. Weak approximation of the fractional Brownian sheet from random walks. Electron Commun Probab, 2013, 18: 1–13

    Article  MathSciNet  Google Scholar 

  34. Wang Z, Yan L, Yu X. Weak approximation of the fractional Brownian sheet using martingale differences. Statist Probab Lett, 2014, 92: 72–78

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu W B. Unit root testing for functionals of linear processes. Econom Theory, 2005, 22: 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Yin, X. & Zhu, D. Weak convergence to Rosenblatt sheet. Front. Math. China 10, 985–1004 (2015). https://doi.org/10.1007/s11464-015-0458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0458-y

Keywords

MSC

Navigation