Skip to main content
Log in

Hydrogenation of nanostructured semiconductors for energy conversion and storage

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Nanostructured semiconductors have been researched intensively for energy conversion and storage applications in recent decades. Despite of tremendous findings and achievements, the performance of the devices resulted from the nanomaterials in terms of energy conversion efficiency and storage capacity needs further improvement to become economically viable for subsequent commercialization. Hydrogenation is a simple, efficient, and cost-effective way for tailoring the electronic and morphological properties of the nanostructured materials. This work reviews a series of hydrogenated nanostructured materials was produced by the hydrogenation of a wide range of nanomaterials. These materials with improved inherent conductivity and changed characteristic lattice structure possess much enhanced performance for energy conversion application, e.g., photoelectrocatalytic production of hydrogen, and energy storage applications, e.g., lithium-ion batteries and supercapacitors. The hydrogenation mechanisms as well as resultant properties responsible for the efficiency improvement are explored in details. This work provides guidance for researchers to use the hydrogenation technology to design functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  Google Scholar 

  2. Winter CJ (2009) Hydrogen energy-abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrog Energy 34:S1–S52

    Article  Google Scholar 

  3. Benford G, Hoffert MI, Caldeira K et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987

    Article  Google Scholar 

  4. Jacobson MZ (2008) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  Google Scholar 

  5. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrog Energy 28:267–284

    Article  Google Scholar 

  6. Garche J, Scrosati B (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  Google Scholar 

  7. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sust Energy Rev 12:1221–1250

    Article  Google Scholar 

  8. Cheng HM, Liu C, Li F, Ma LP (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  Google Scholar 

  9. Boettcher SW, Walter MG, Warren EL et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  10. Wu C, Xie Y (2010) Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ Sci 3:1191–1206

    Article  Google Scholar 

  11. Li S, Zhou H, Han B et al (2012) Hydrogenated mesoporous TiO2–SiO2 with increased moderate strong Brönsted acidic sites for Friedel-Crafts alkylation reaction. Catal Sci Technol 2:719–721

    Article  Google Scholar 

  12. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  13. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  Google Scholar 

  14. Çetin K, Zunger A (2002) n-Type doping of oxides by hydrogen. Appl Phys Lett 81:73–75

    Article  Google Scholar 

  15. Wei W, Yaru N, Chunhua L et al (2012) Hydrogenation of TiO2 nanosheets with exposed 001 facets for enhanced photocatalytc activity. RSC Adv 2:8286–8288

    Article  Google Scholar 

  16. Wang G, Ling Y, Li Y (2012) Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4:6682–6691

    Article  Google Scholar 

  17. Van de Walle CG, Neugebauer J (2006) Hydrogen in semiconductors. Annu Rev Mater Res 36:179–198

    Article  Google Scholar 

  18. Chen X, Li C, Gratzel M et al (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909–7937

    Article  Google Scholar 

  19. Matsubara M, Amini MN, Saniz R et al (2012) Attracting shallow donors: hydrogen passivation in (Al, Ga, In)-doped ZnO. Phys Rev B 86:165207

    Article  Google Scholar 

  20. Seager CH (1991) Hydrogenation methods. In: Pankove JI, Johnson NM (eds) Hydrogen in semiconductors: hydrogen in silicon, vol 34. Academic Press, New York, pp 17–31

    Chapter  Google Scholar 

  21. Herklotz F, Lavrov EV, Weber J (2011) Infrared absorption of the hydrogen donor in rutile TiO2. Phys Rev B 83:235202

    Article  Google Scholar 

  22. Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev 85:1012–1015

    Google Scholar 

  23. Strzhemechny YM, Mosbacker HL, Look DC et al (2004) Remote hydrogen plasma doping of single crystal ZnO. Appl Phys Lett 84:2545–2547

    Article  Google Scholar 

  24. Sun CH, Jia Y, Yang XH et al (2011) Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J Phys Chem C 115:25590–25594

    Article  Google Scholar 

  25. Shin JY, Joo JH, Samuelis D et al (2012) Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater 24:543–551

    Article  Google Scholar 

  26. Zhen C, Wang L, Liu L et al (2013) Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting. Chem Commun 49:6191–6193

    Article  Google Scholar 

  27. Ateya BG, Khader MM, Kheiri FMN et al (1993) Mechanism of reduction of rutile with hydrogen. J Phys Chem 97:6074–6077

    Article  Google Scholar 

  28. Herkoltz F (2011) Hydrogen-related defects in ZnO and TiO2. Dissertation, Technische Universität Dresden, Dresden

  29. Wardle MG, Goss JP, Briddon PR (2005) Theory of Fe Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys Rev B 72:155108

    Article  Google Scholar 

  30. Yu M, Sun H, Sun X et al (2013) Hierarchical Al-doped and hydrogenated ZnO nanowire@MnO2 ultra-thin nanosheet core/shell arrays for high-performance supercapacitor electrode. Int J Electrochem Sci 8:2313–2329

    Google Scholar 

  31. Chen X, Liu L, Liu Z et al (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3:1510

    Google Scholar 

  32. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  33. Williams JS (1998) Ion implantation of semiconductors. Mater Sci Eng A253:8–15

    Article  Google Scholar 

  34. Gray EM, Webb CJ (2012) In-situ diffraction techniques for studying hydrogen storage materials under high hydrogen pressure. Int J Hydrog Energy 37:10182–10195

    Article  Google Scholar 

  35. Kaufman HR (1990) Broad-beam industrial ion sources. Rev Sci Instrum 61:230–235

    Article  Google Scholar 

  36. Singhal RK, Kumar S, Kumari P et al (2011) Evidence of defect-induced ferromagnetism and its “switch” action in pristine bulk TiO2. Appl Phys Lett 98:092510

    Article  Google Scholar 

  37. Xia T, Zhang W, Murowchick JB et al (2013) A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv Energy Mater 3:1516–1523

    Article  Google Scholar 

  38. Chen X, Liu L, Yu PY et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  39. Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  40. Jiang X, Zhang Y, Jiang J et al (2012) Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J Phys Chem C 116:22619–22624

    Article  Google Scholar 

  41. Liu G, Yin LC, Wang J et al (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5:9603

    Article  Google Scholar 

  42. Wang G, Ling Y, Wang H et al (2012) Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci 5:6180–6187

    Article  Google Scholar 

  43. Xia T, Zhang W, Li W et al (2013) Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2:826–835

    Article  Google Scholar 

  44. Chen XB, Liu L, Liu Z et al (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3:1510

    Google Scholar 

  45. Liu H, Ma HT, Li XZ et al (2003) The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50:39–46

    Article  Google Scholar 

  46. Xia T, Chen X (2013) Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J Mater Chem A 1:2983–2989

    Article  Google Scholar 

  47. Bak T, Nowotny J, Rekas M et al (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energ 27:991–1022

    Article  Google Scholar 

  48. Bard AJ (1982) Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172–177

    Article  Google Scholar 

  49. Bard AJ (1980) Photoelectrochemistry. Science 207:139–144

    Article  Google Scholar 

  50. Felici M, Polimeni A, Salviati G et al (2006) In-plane bandgap engineering by modulated hydrogenation of dilute nitride semiconductors. Adv Mater 18:1993–1997

    Article  Google Scholar 

  51. Kamiya T, Nomura K, Hirano M et al (2008) Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO4–x : optical analyses and first-principle calculations. Phys Status Solidi C 5:3098–3100

    Article  Google Scholar 

  52. Lu X, Wang G, Xie S et al (2012) Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem Commun 48:7717–7719

    Article  Google Scholar 

  53. Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  54. Fang WQ, Gong XQ, Yang HG (2011) On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett 2:725–734

    Article  Google Scholar 

  55. Vittadini A, Selloni A, Rotzinger FP et al (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81:2954–2957

    Article  Google Scholar 

  56. Breckenridge R, Hosler W (1953) Electrical properties of titanium dioxide semiconductors. Phys Rev 91:793–802

    Article  Google Scholar 

  57. Armand M, Tarascon JM (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  58. Deng D, Kim MG, Lee JY et al (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837

    Article  Google Scholar 

  59. Kang Q, Cao J, Zhang Y et al (2013) Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J Mater Chem A 1:5766–5774

    Article  Google Scholar 

  60. Park M, Zhang X, Chung M et al (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929

    Article  Google Scholar 

  61. Chen JS, Lou XW (2010) The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. J Power Sources 195:2905–2908

    Article  Google Scholar 

  62. Lu X, Wang G, Zhai T et al (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696

    Article  Google Scholar 

  63. Lee DK, Jeon JI, Kim MH et al (2005) Oxygen nonstoichiometry (δ) of TiO2−δ revisited. J Solid State Chem 178:185–193

    Article  Google Scholar 

  64. Chen JS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130

    Article  Google Scholar 

  65. Hu YS, Kienle L, Guo YG et al (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426

    Article  Google Scholar 

  66. Pfanzelt M, Kubiak P, Fleischhammer M et al (2011) TiO2 rutile—an alternative anode material for safe lithium-ion batteries. J Power Sources 196:6815–6821

    Article  Google Scholar 

  67. Lu Z, Yip CT, Wang L et al (2012) Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 77:991–1000

    Article  Google Scholar 

  68. Shen L, Uchaker E, Zhang X et al (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24:6502–6506

    Article  Google Scholar 

  69. Hu CC, Chang KH, Lin MC et al (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  Google Scholar 

  70. Leela A, Reddy M, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727–7734

    Article  Google Scholar 

  71. Castellanos-Gomez A, Wojtaszek M, Arramel N et al (2012) Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small 8:1607–1613

    Article  Google Scholar 

  72. Suhariadi I, Matsushima K, Kuwahara K et al (2013) Effects of hydrogen dilution on ZnO thin films fabricated via nitrogen-mediated crystallization. Jpn J Appl Phys 52:01AC08

    Article  Google Scholar 

  73. Yang P, Xiao X, Li Y et al (2013) Hydrogenated ZnO core shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7:2617–2626

    Article  Google Scholar 

  74. Simon P, Burke A (2008) Nanostructured carbons: double-layer capacitance and more. J Electrochem Soc 17:38–43

    Google Scholar 

  75. Hofmann D, Hofstaetter A, Leiter F et al (2002) Hydrogen: a relevant shallow donor in zinc oxide. Phys Rev Lett 88:045504

    Article  Google Scholar 

  76. Myong SY, Lim KS (2003) Highly stable and textured hydrogenated ZnO thin films. Appl Phys Lett 82:3026–3028

    Article  Google Scholar 

  77. Pan X, Zhao Y, Ren G et al (2013) Highly conductive VO2 treated with hydrogen for supercapacitors. Chem Commun 49:3943–3945

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ARC Discovery Grants from the Australian Research Council Discovery Project and the National Natural Science Foundation of China (21328301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanqing Zhang.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Qiu, J., Dawood, J. & Zhang, S. Hydrogenation of nanostructured semiconductors for energy conversion and storage. Chin. Sci. Bull. 59, 2144–2161 (2014). https://doi.org/10.1007/s11434-014-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0186-9

Keywords

Navigation