Skip to main content
Log in

fMRI-constrained source analysis of visual P300 in Landolt ring task

  • Articles
  • Neurobiology
  • Published:
Chinese Science Bulletin

Abstract

An fMRI-constrained source analysis was applied to investigate visual P300 in the Landolt ring task. To study the localization and relative activation timing of P300 generators, we implemented simultaneous EEG/fMRI to identify BOLD signal changes and record 64-channel EEG in 10 subjects during a Landolt ring task inside a 1.5-T fMRI scanner using an MR-compatible EEG recording system. MRI artifact subtraction software was applied to obtain continuous EEG data. Then, the simultaneous collecting of EEG and fMRI was validated in preserving relevant ERPs. The fMRI-constrained source analysis resulted in an 8-dipole solution. The bilateral middle frontal and the right inferior parietal dipole waveforms showed a short latency peak corresponding to the early P300 activity, while the four parietal and the anterior cingulate dipole waveforms showed a long latency peak corresponding to the late P300 activity. The longest latency peak of the anterior cingulate dipole agrees with its role in initiation of motor response after successful target recognition. Target detection in the Landolt ring task produces the strongest and most extensive parietal activation (especially superior parietal activation), which might be due to its particular visual attention switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Picton T W. The P300 wave of the human event-related potential. J Clin Neurophysiol, 1992, 9: 456–479

    Article  Google Scholar 

  2. Knight R T. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol, 1984, 59: 9–20

    Article  Google Scholar 

  3. Knight R T. Contribution of human hippocampal region to novelty detection. Nature, 1996, 383: 256–259

    Article  Google Scholar 

  4. Knight R T, Scabini D, Woods D L, et al. Contributions of temporal-parietal junction to the human auditory P300. Brain Res, 1989, 502: 109–116

    Article  Google Scholar 

  5. Yamaguchi S, Knight R T. Effects of temporal-parietal lesions on the samatosensory P3 to lower limb stimulation. Electroencephalogr Clin Neurophysiol, 1992, 84: 139–148

    Article  Google Scholar 

  6. Verleger R, Heide W, Butt C, et al. Reduction of P3b in patients with temporo-parietal lesions. Brain Res Cogn Brain Res, 1994, 2(2): 103–116

    Article  Google Scholar 

  7. Baudena P, Halgren E, Heit G., et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol, 1995, 94(4): 251–264

    Article  Google Scholar 

  8. Halgren E, Baudena P, Clarke J M, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol, 1995, 94(3): 191–220

    Article  Google Scholar 

  9. Halgren E, Baudena P, Clarke J M, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol, 1995, 94(4): 229–250

    Article  Google Scholar 

  10. Bledowski C, Prvulovic D, Goebel R, et al. Attentional systems in target and distractor processing: a combined ERP and fMRI study. NeuroImage, 2004, 22: 530–540

    Article  Google Scholar 

  11. Bledowski C, Prvulovic D, Hoechstetter K, et al. Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. J Neurosci, 2004, 24(42): 9353–9360

    Article  Google Scholar 

  12. Linden D E J, Prvulovic D, Formisano E, et al. The functional neuroanatomy of target detection: An fMRI study of visual and auditory oddball tasks. Cereb Cortex, 1999, 9: 815–823

    Article  Google Scholar 

  13. Kiehl K A, Stevens M C, Laurens K R, et al. An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. Neuroimage, 2005, 25(3): 899–915

    Article  Google Scholar 

  14. Eichele T, Specht K, Moosmann M, et al. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA, 2005, 102(49): 17798–17803

    Article  Google Scholar 

  15. Corbetta M, Shulman G L. Control of goal directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 2002, 3(3): 201–215

    Article  Google Scholar 

  16. Hopfinger J B, Buonocore M H, Mangun G R. The neural mechanisms of top-down attentional control. Nat Neurosci, 2000, 3(3): 284–291

    Article  Google Scholar 

  17. Allen P J, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage, 2000, 12: 230–239

    Article  Google Scholar 

  18. Laufs H, Kleinschmidt A, Beyerle A, et al. EEG-correlated fMRI of human alpha activity. NeuroImage, 2003, 19: 1463–1476

    Article  Google Scholar 

  19. Hoffmann A, Jager L, Werhahn K J, et al. Electroencephalography during functional echo-planar imaging: Detection of epileptic spikes using post-processing methods. Magn Reson Med, 2000, 44: 791–798

    Article  Google Scholar 

  20. Bonmassar G, Schwartz D P, Liu A K, et al. Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. NeuroImage, 2001, 13: 1035–1043

    Article  Google Scholar 

  21. Liu A K, Belliveau J W, Dale A M. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci USA, 1998, 95: 8945–8950

    Article  Google Scholar 

  22. Li Y Z, Wang L Q, Wang M S. EEG-correlated fMRI of P3b component in P300 waves. Chin Sci Bull, 2005, 50(21): 2448–2456

    Article  Google Scholar 

  23. Robson M D, Dorosz J L, Gore J C. Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage, 1998, 7: 185–198

    Article  Google Scholar 

  24. Stevens A A, Skudlarski P, Gatenby J C, et al. Event-related fMRI of auditory and visual oddball tasks. Magn Reson Imaging, 2000, 18: 495–502.

    Article  Google Scholar 

  25. Friston K J, Holmes A P, Worsley K P, et al. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Map, 1995, 2: 189–210

    Article  Google Scholar 

  26. Towle V L, Bolanos J, Suarez D, et al. The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol, 1993, 86: 1–6

    Article  Google Scholar 

  27. Giard M H, Perrin F, Echallier J E, et al. Dissociation of temporal and frontal components in the human auditory N1 wave: A scalp current density and dipole model analysis. Electroencephalogr Clin Neurophysiol, 1994, 92: 238–252

    Article  Google Scholar 

  28. Pantev C, Bertrand O, Eulitz C, et al. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol, 1995, 94: 26–40

    Article  Google Scholar 

  29. Talariach J, Tournoux P. Co-planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishes, 1988

    Google Scholar 

  30. Clark V, Hillyard S A. Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci, 1996, 8: 387–402

    Article  Google Scholar 

  31. Lepage M, Ghaffar O, Nyberg L, et al. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci USA, 2000, 97: 506–511

    Article  Google Scholar 

  32. Rushworth M F, Paus T, Sipila P K. Attention systems and the organization of the human parietal cortex. J Neurosci, 2001, 21: 5262–5271

    Google Scholar 

  33. Yantis S, Schwarzbach J, Serences J T, et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci, 2002, 5: 995–1002

    Article  Google Scholar 

  34. Pochon J B, Levy R, Poline J B, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: An fMRI study. Cereb Cortex, 2001, 11(3): 260–266

    Article  Google Scholar 

  35. Sokolov E N, Clarke A D B, Stefan W, et al. Perception and the Conditioned Reflex. New York: The Macmillan Company, 1963

    Google Scholar 

  36. Jiang Y, Haxby J V, Martin A, et al. Complementary neural mechanisms for tracking items in human working memory. Science, 2000, 287: 643–646

    Article  Google Scholar 

  37. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 2001, 38: 557–577

    Article  Google Scholar 

  38. Jeon Y W, Polich J. P3a from passive visual stimulus task. Clin Neurophysiol, 2001, 112: 2202–2208

    Article  Google Scholar 

  39. Liddle P F, Kiehl K A, Smith A M. Event-related fMRI study of response inhibition. Hum Brain Mapp, 2001, 12(2): 100–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li YueZhi.

Additional information

Supported by the Natural Science Foundation of Guangdong Province (Grant No. 06028566)

About this article

Cite this article

Li, Y., Xu, T., Wang, L. et al. fMRI-constrained source analysis of visual P300 in Landolt ring task. Chin. Sci. Bull. 53, 76–86 (2008). https://doi.org/10.1007/s11434-008-0060-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0060-8

Keywords

Navigation