Skip to main content
Log in

Persistent excitation of spin waves for kπ-state skyrmions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this study, we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spin-polarized current and found an excited spin wave that can propagate persistently along the direction of the radius toward the center. This dynamic process is associated with two energetically favorable states in an oscillating period of spin waves. In this case, the spin-polarized current plays a role similar to effective perpendicular magnetic anisotropy and decreases the minimum energy in the magnetic system. Our findings provide insight into understanding the dynamic behaviors of topological magnetic textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).

    Google Scholar 

  2. D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A. D. Kent, T. Jungwirth, O. Gutfleisch, C. G. Kim, and A. Berger, J. Phys. D-Appl. Phys. 50, 636001 (2017).

    Google Scholar 

  3. B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys. Rep. 507, 107 (2011), arXiv: 1101.0479.

    ADS  Google Scholar 

  4. K. Schultheiss, R. Verba, F. Wehrmann, K. Wagner, L. Körber, T. Hula, T. Hache, A. Kákay, A. A. Awad, V. Tiberkevich, A. N. Slavin, J. Fassbender, and H. Schultheiss, Phys. Rev. Lett. 122, 097202 (2019), arXiv: 1806.03910.

    ADS  Google Scholar 

  5. J. Qin, X. Chen, T. Yu, X. Wang, C. Guo, C. Wan, J. Feng, H. Wei, Y. Liu, and X. Han, Phys. Rev. Appl. 10, 044067 (2018).

    ADS  Google Scholar 

  6. Z. Zhou, X. Wang, Y. Nie, Q. Xia, Z. Zeng, and G. Guo, Phys. Rev. B 99, 014420 (2019).

    ADS  Google Scholar 

  7. A. Houshang, R. Khymyn, H. Fulara, A. Gangwar, M. Haidar, S. R. Etesami, R. Ferreira, P. P. Freitas, M. Dvornik, R. K. Dumas, and J. Åkerman, Nat. Commun. 9, 4374 (2018), arXiv: 1712.00954.

    ADS  Google Scholar 

  8. K. Vogt, F. Y. Fradin, J. E. Pearson, T. Sebastian, S. D. Bader, B. Hillebrands, A. Hoffmann, and H. Schultheiss, Nat. Commun. 5, 3727 (2014).

    ADS  Google Scholar 

  9. C. Liu, J. Chen, T. Liu, F. Heimbach, H. Yu, Y. Xiao, J. Hu, M. Liu, H. Chang, T. Stueckler, S. Tu, Y. Zhang, Y. Zhang, P. Gao, Z. Liao, D. Yu, K. Xia, N. Lei, W. Zhao, and M. Wu, Nat. Commun. 9, 738 (2018).

    ADS  Google Scholar 

  10. G. Consolo, L. Lopez-Diaz, B. Azzerboni, I. Krivorotov, V. Tiberkevich, and A. Slavin, Phys. Rev. B 88, 014417 (2013).

    ADS  Google Scholar 

  11. V. E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, and S. O. Demokritov, Nat. Commun. 7, 10446 (2016).

    ADS  Google Scholar 

  12. Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V. E. Demidov, S. O. Demokritov, and I. N. Krivorotov, Nat. Commun. 5, 5616 (2014), arXiv: 1404.7262.

    ADS  Google Scholar 

  13. V. E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, and S. O. Demokritov, Nat. Mater. 11, 1028 (2012).

    ADS  Google Scholar 

  14. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, and S. O. Demokritov, Appl. Phys. Lett. 105, 172410 (2014).

    ADS  Google Scholar 

  15. V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Nat. Mater. 9, 984 (2010).

    ADS  Google Scholar 

  16. M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar, and J. Akerman, Nat. Nanotech. 6, 635 (2011).

    ADS  Google Scholar 

  17. L. J. Chang, Y. F. Liu, M. Y. Kao, L. Z. Tsai, J. Z. Liang, and S. F. Lee, Sci. Rep. 8, 3910 (2018).

    ADS  Google Scholar 

  18. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, A. N. Slavin, and S. O. Demokritov, Sci. Rep. 5, 8578 (2015).

    ADS  Google Scholar 

  19. S. Komineas, and N. Papanicolaou, Phys. Rev. B 92, 064412 (2015), arXiv: 1505.04377.

    ADS  Google Scholar 

  20. C. Jin, C. Song, J. Wang, H. Xia, J. Wang, and Q. Liu, J. Appl. Phys. 122, 223901 (2017).

    ADS  Google Scholar 

  21. S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, New J. Phys. 17, 023061 (2015).

    ADS  Google Scholar 

  22. N. Sisodia, S. Komineas, and P. K. Muduli, Phys. Rev. B 99, 184441 (2019).

    ADS  Google Scholar 

  23. R. Zhao, W. Chen, C. Hu, L. Chen, J. Zhang, X. Liu, X. Zhang, and M. Yan, SPIN 09, 1950009 (2019).

    ADS  Google Scholar 

  24. F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J. V. Kim, New J. Phys. 18, 075011 (2016), arXiv: 1602.00118.

    ADS  Google Scholar 

  25. Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 109, 037603 (2012), arXiv: 1204.5009.

    ADS  Google Scholar 

  26. T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, and D. Grundler, Nat. Mater. 14, 478 (2015).

    ADS  Google Scholar 

  27. S. L. Zhang, I. Stasinopoulos, T. Lancaster, F. Xiao, A. Bauer, F. Rucker, A. A. Baker, A. I. Figueroa, Z. Salman, F. L. Pratt, S. J. Blundell, T. Prokscha, A. Suter, J. Waizner, M. Garst, D. Grundler, G. van der Laan, C. Pfleiderer, and T. Hesjedal, Sci. Rep. 7, 123 (2017).

    ADS  Google Scholar 

  28. M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden, M. A. Bisotti, M. Albert, D. Chernyshenko, O. Hovorka, R. L. Stamps, and H. Fangohr, Sci. Rep. 5, 17137 (2015), arXiv: 1312.7665.

    ADS  Google Scholar 

  29. A. Thiaville, J. M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003).

    ADS  Google Scholar 

  30. C. Andreas, A. Kákay, and R. Hertel, Phys. Rev. B 89, 134403 (2014), arXiv: 1311.1617.

    ADS  Google Scholar 

  31. Y. Liu, H. Du, M. Jia, and A. Du, Phys. Rev. B 91, 094425 (2015).

    ADS  Google Scholar 

  32. M. Donahue, and D. Porter, User Manual for OOMMF Version 2.0a2 (National Institute of Standards and Technology, Gaithersburg, 1999).

    Google Scholar 

  33. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    ADS  Google Scholar 

  34. L. Berger, Phys. Rev. B 54, 9353 (1996).

    ADS  Google Scholar 

  35. X. Ma, G. Yu, C. Tang, X. Li, C. He, J. Shi, K. L. Wang, and X. Li, Phys. Rev. Lett. 120, 157204 (2018).

    ADS  Google Scholar 

  36. O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, Nat. Nanotech. 12, 830 (2016).

    Google Scholar 

  37. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Nat. Nanotech. 11, 444 (2016), arXiv: 1502.07853.

    ADS  Google Scholar 

  38. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotech. 8, 839 (2013).

    ADS  Google Scholar 

  39. W. Jiang, Y. Zhou, J. Xia, X. Zhang, Y. Song, C. Ma, H. Fangohr, G. Zhao, X. Liu, and W. Zhao, IEEE Magn. Lett. 9, 1 (2008).

    Google Scholar 

  40. S. Rohart, and A. Thiaville, Phys. Rev. B 88, 184422 (2013), arXiv: 1310.0666.

    ADS  Google Scholar 

  41. A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A. N. Bogdanov, and R. Wiesendanger, New J. Phys. 18, 065003 (2016), arXiv: 1508.02155.

    ADS  Google Scholar 

  42. X. S. Wang, H. Y. Yuan, and X. R. Wang, Commun. Phys. 1, 31 (2018).

    Google Scholar 

  43. S. Seki, and M. Mochizuki, Skyrmions in Magnetic Materials (Springer, Berlin, 2016), p. 8.

    Google Scholar 

  44. J. G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, Phys. Rev. Lett. 98, 056604 (2007), arXiv: cond-mat/0607362.

    ADS  Google Scholar 

  45. H. Du, W. Ning, M. Tian, and Y. Zhang, EPL 101, 37001 (2013), arXiv: 1210.2862.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueFeng Zhang.

Additional information

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E010001), the National Natural Science Foundation of China (Grant Nos. U1704253, and 51471045), and the Fundamental Research Funds for the Central Universities (Grant No. N160208001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Hu, C., Ji, L. et al. Persistent excitation of spin waves for kπ-state skyrmions. Sci. China Phys. Mech. Astron. 63, 267511 (2020). https://doi.org/10.1007/s11433-020-1529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1529-0

Keywords

Navigation