Skip to main content
Log in

Energy evolution in complex impacts with friction

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we base a theory established in an impulse-energy level to solve a problem of a disk-ball system, in which a moving ball collides perpendicularly against an disk staying on a horizontal surface. The impact process is an ensemble consisting of a point impact coupled with a line contact between bodies of the disk, the ball and the fixed horizontal surface. We experimentally and theoretically show that the post-impact states of the disk dramatically vary with the impacting position of the ball. Explanations are given by investigating the evolutions of the potential energies resided in the points involved in the complex frictional impacts. Good agreements between numerical and experimental results strongly suggest that the evolution of energy together with the dissipation must be reflected in mathematical models if a precise description for the post-impact state of systems is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Job S, Melo F, Sen S, et al. How Hertzian solitary waves interact with boundaries in a 1-D granular medium. Phys Rev Lett, 2005, 94: 178002

    Article  ADS  Google Scholar 

  2. Daraio C, Nesterenko V F, Herbold E B, et al. Tunability of solitary wave property in one-dimensional strongly nonlinear phonic crystals. Phys Rev E, 2006, 73: 026610

    Article  ADS  Google Scholar 

  3. Coste C, Falcon E, Fauve S. Solitary waves in a chain of beads under Hertz contact. Phys Rev E, 1997, 56: 6104

    Article  ADS  Google Scholar 

  4. Luding S. Anomalous energy dissipation in molecular dynamics simulations of grains: The detachment effect. Phys Rev E, 1994, 50: 4113

    Article  ADS  Google Scholar 

  5. Lu P, Li S X, Zhao J, et al. A computational investigation on random packings of sphere-spherocylinder mixtures. Sci China-Phys Mech Astron, 2010, 53: 2284–2292

    Article  ADS  Google Scholar 

  6. Liu L F, Zhang L, Liao S F. Structural signature and contact force distributions in the simulated three-dimensional sphere packs subjected to uniaxial compression. Sci China-Phys Mech Astron, 2010, 53: 892–904

    Article  MathSciNet  ADS  Google Scholar 

  7. Seifried R, Hu B, Eberhard P. Numerical and experiment investigation of radial impacts on a half-circular plate. Multibody Syst Dyna, 2003, 9: 265–281

    Article  MATH  Google Scholar 

  8. Schiehlen W, Seifried R, Eberhard P. Elastic to plastic phenomena in multibody dynamics. Comput Methods Appl Mech Eng, 2006, 195: 6874–6890

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chen Y L, Huang K B, Yu X. Numerical study of detonation shock dynamics using generalized finite difference method. Sci China-Phys Mech Astron, 2011, 54: 1883–1888

    Article  ADS  Google Scholar 

  10. Liu C S, Zhang K, Yang R. The FEM analysis and approximate model for cylindrical joints with clearances. Mech Mach Theory, 2007, 42: 183–197

    Article  MATH  Google Scholar 

  11. Khulief Y, Shabana A. A continuous force model for the impact analysis of flexible multi-body system. Mech Mach Theory, 1987, 22: 213–224

    Article  Google Scholar 

  12. Yigit A S, Ulsoy A G, Scott R A. Spring-dashpot models for the dynamics of a radially rotating beam with impact. J Sound Vib, 1990, 142: 515–525

    Article  ADS  Google Scholar 

  13. Fan K Q, Wang W D, Zhu Y M, et al. A multiscale modeling approach to adhesive contact. Sci China-Phys Mech Astron, 2011, 54: 1680–1686

    Article  ADS  Google Scholar 

  14. Han I, Gilmore B J. Multi-body impact motion with friction-analysis, simulation and experimental validation. ASME J Mech Des, 1993, 115: 412–422

    Article  Google Scholar 

  15. Moreau J J, Panagiotopoulos P D. Nonsmooth Mechanics and Applications. London: Springer Press, 1988

    Google Scholar 

  16. Pfeiffer F, Glocker C. Multibody Dynamics with Unilateral Contacts. New York: Wiley-VCH Press, 1996

    Book  MATH  Google Scholar 

  17. Liu C S, Zhao Z, Brogliato B. Frictionless multiple impacts in multibody systems, Part I: Theoretical framework. Proc R Soc A, 2008, 464: 3193–3211

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Zhao Z, Liu C S, Chen B. The numerical method for three-dimensional impact with friction of multi-rigid-body system. Sci China Ser G-Phys Mech Astron, 2006, 49: 102–118

    Article  ADS  MATH  Google Scholar 

  19. Ma W. Theoretical model for the pulse dynamics in a long granular chain. Phys Rev E, 2006, 74: 046602

    Article  ADS  Google Scholar 

  20. Liu C S, Zhao Z, Brogliato B. Frictionless multiple impacts in multibody systems, Part II: Numerical algoithm and simulation results. Proc R Soc A, 2009, 465: 1–23

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Dorbolo S, Volfson D, Tsimring L. Dynamics of a bouncing dimer. Phys Rev Lett, 2005, 95: 44101

    Article  ADS  Google Scholar 

  22. Zhao Z, Liu C S, Brogliato B. Planar dynamics of a rigid body system with frictional impacts, II: Qualitative analysis and numerical simulations. Proc R Soc A, 2009, 465: 2267–2292

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Zhang H J, Brogliato B, Liu C S. Study of the planar rocking-block dynamics with Coulomb friction: Critical kinetic angles. J Comp Nonl Dyna, 2013, 8: 021002

    Article  Google Scholar 

  24. Darboux G. Etude geometrique sur les percussion et le choc des corps. Bulletin des Sciences Mathematiques et Astronomique, 1880, 4: 126–160

    Google Scholar 

  25. Keller J B. Impact with friction. ASME J Appl Mech, 1986, 53: 1–4

    Article  MATH  Google Scholar 

  26. Stronge W J. Impact Mechanics. Cambridge: Cambridge University Press, 2000

    Book  MATH  Google Scholar 

  27. Brogliato B. Nonsmooth Mechanics. London: Springer Press, 1999

    Book  MATH  Google Scholar 

  28. Yilmaz C, Gharib M, Hurmuzlu Y. Solving frictionless rocking block problem with multiple impacts. Proc R Soc A, 2009, 465: 3323–3339

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Liu C, Zhao Z, Chen B. The bouncing motion appearing in a robotics system with unilateral constraints. Nonlinear Dyn, 2007, 49: 217–232

    Article  MathSciNet  MATH  Google Scholar 

  30. Ben-David O, Rubin S, Shmuel M. Slip-stick and the evolution of frictional strength. Nature, 2010, 463: 76–79

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiShan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, C., Zhao, Z. et al. Energy evolution in complex impacts with friction. Sci. China Phys. Mech. Astron. 56, 875–881 (2013). https://doi.org/10.1007/s11433-013-5061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5061-1

Keywords

Navigation