Skip to main content
Log in

Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

River runoff in the Arctic and the Tibetan Plateau (TP) change significantly in recent decades. However, the mechanisms of the physical processes of permafrost river runoff change remain uncertain across large scale. This study investigated the mainstreams and tributaries of main Arctic and TP rivers dominated by permafrost and assessed the linkage between hydrological regime change and permafrost. The results show that the effects of permafrost on river runoff are highly dependent on the permafrost coverage of a watershed. For the past decades, the majority of the Arctic and TP basins showed increased discharge, while all of the studied basins showed increased baseflow, with faster increasing speed than total discharge. Both total discharge and baseflow annual change rate (ΔQ and ΔBF) increased with permafrost coverage, indicating the increments of streamflow are enhanced with high permafrost coverage. Meanwhile, the annual change of precipitation showed weak connection with total discharge and baseflow change. The high permafrost coverage basins showed high annual maximum/ minimum discharge ratio (Qmax/Qmin), while the Qmax/Qmin changed slightly in low permafrost cover basins. Our results highlight the importance of permafrost coverage on streamflow regime change for permafrost basins across the northern hemisphere. Due to these linkage between permafrost extent and runoff regime change and the increasing changes of permafrost, more attention should be paid to the change of hydrological processes in permafrost-underlain basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bense V F, Ferguson G, Kooi H. 2009. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett, 36: L22401

    Google Scholar 

  • Bense V F, Kooi H, Ferguson G, Read T. 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res, 117: F03036

    Google Scholar 

  • Berezovskaya S, Yang D, Kane D L. 2004. Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett, 31: L21502

    Google Scholar 

  • Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J, Mernild S H, Prowse T, Semenova O, Stuefer S L, Woo M K. 2016. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J Geophys Res-Biogeosci, 121: 621–649

    Google Scholar 

  • Bring A, Shiklomanov A, Lammers R B. 2017. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth’s Future, 5: 72–92

    Google Scholar 

  • Brown J, Ferrians O, Heginbottom J A, Melnikov E. 2002. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 (National Snow and Ice Data Center, 2002). Available at: https://doi.org/nsidc.org/data/ggd318.html

    Google Scholar 

  • Brown J, Hinkel K M, Nelson F E. 2000. The circumpolar active layer monitoring (calm) program: Research designs and initial results. Polar Geogr, 24: 166–258

    Google Scholar 

  • Frey K E, McClelland J W. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process, 23: 169–182

    Google Scholar 

  • Gedney N, Cox P M, Betts R A, Boucher O, Huntingford C, Stott P A. 2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439: 835–838

    Google Scholar 

  • Grosse G, Goetz S, McGuire A D, Romanovsky V E, Schuur E A. 2016. Changing permafrost in a warming world and feedbacks to the Earth system. Environ Res Lett, 11: 040201

    Google Scholar 

  • Haine T W N, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B, Spreen G, de Steur L, Stewart K D, Woodgate R. 2015. Arctic freshwater export: Status, mechanisms, and prospects. Glob Planet Change, 125: 13–35

    Google Scholar 

  • Immerzeel W W, van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328: 1382–1385

    Google Scholar 

  • Jorgenson M T, Shur Y L, Pullman E R. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett, 33: L02503

    Google Scholar 

  • Lamontagne-Hallé P, McKenzie J M, Kurylyk B L, Zipper S C. 2018. Changing groundwater discharge dynamics in permafrost regions. Environ Res Lett, 13: 084017

    Google Scholar 

  • Lawrence D M, Slater A G. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett, 32: L24401

    Google Scholar 

  • Liljedahl A K, Boike J, Daanen R P, Fedorov A N, Frost G V, Grosse G, Hinzman L D, Iijma Y, Jorgenson J C, Matveyeva N, Necsoiu M, Raynolds M K, Romanovsky V E, Schulla J, Tape K D, Walker D A, Wilson C J, Yabuki H, Zona D. 2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci, 9: 312–318

    Google Scholar 

  • Mao T, Wang G, Zhang T. 2016. Impacts of climatic change on hydrological regime in the three-river headwaters region, China, 1960–2009. Water Resour Manage, 30: 115–131

    Google Scholar 

  • McClelland J W, Holmes R M, Peterson B J, Stieglitz M. 2004. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res, 109: D18102

    Google Scholar 

  • Pavelsky T M, Smith L C. 2006. Intercomparison of four global precipitation data sets and their correlation with increased Eurasian river discharge to the Arctic Ocean. J Geophys Res, 111: D21112

    Google Scholar 

  • Peterson B J, Holmes R M, McClelland J W, Vörösmarty C J, Lammers R B, Shiklomanov A I, Shiklomanov I A, Rahmstorf S. 2002. Increasing river discharge to the Arctic Ocean. Science, 298: 2171–2173

    Google Scholar 

  • Rawlins M A, Willmott C J, Shiklomanov A, Linder E, Frolking S, Lammers R B, Vörösmarty C J. 2006. Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean. Geophys Res Lett, 33: L07403

    Google Scholar 

  • Rawlins M A, Ye H, Yang D, Shiklomanov A, McDonald K C. 2009. Divergence in seasonal hydrology across northern Eurasia: Emerging trends and water cycle linkages. J Geophys Res, 114: D18119

    Google Scholar 

  • Serikova S, Pokrovsky O S, Ala-Aho P, Kazantsev V, Kirpotin S N, Kopysov S G, Krickov I V, Laudon H, Manasypov R M, Shirokova L S, Soulsby C, Tetzlaff D, Karlsson J. 2018. High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nat Geosci, 11: 825–829

    Google Scholar 

  • Shiklomanov A I, Lammers R B, Lettenmaier D P, Polischuk Y M, Savichev O G, Smith L C, Chernokulsky A V. 2013. Hydrological changes: Historical analysis, contemporary status, and future projections. Dordrecht: Regional Environmental Changes in Siberia and Their Global Consequences. 111–154

    Google Scholar 

  • Shen M, Piao S, Jeong S J, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin C S, Li L Z X, Li Y, Myneni R B, Yang K, Zhang G, Zhang Y, Yao T. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci USA, 112: 9299–9304

    Google Scholar 

  • Simonov Y, Khristoforov A. 2009. Arctic rivers water runoff change. EGU General Assembly Conference Abstracts, 11: 676

    Google Scholar 

  • Smith L C, Pavelsky T M, MacDonald G M, Shiklomanov A I, Lammers R B. 2007. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res, 112: G04S47

    Google Scholar 

  • Song C, Huang B, Richards K, Ke L, Hien Phan V. 2014. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour Res, 50: 3170–3186

    Google Scholar 

  • Spence C, Kokelj S V, Kokelj S A, McCluskie M, Hedstrom N. 2015. Evidence of a change in water chemistry in Canada’s subarctic associated with enhanced winter streamflow. J Geophys Res-Biogeosci, 120: 113–127

    Google Scholar 

  • St Jacques J M, Sauchyn D J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett, 36: L01401

    Google Scholar 

  • Tong L, Xu X, Fu Y, Li S. 2014. Wetland changes and their responses to climate change in the “Three-River Headwaters” Region of China since the 1990s. Energies, 7: 2515–2534

    Google Scholar 

  • Walvoord M A, Kurylyk B L. 2016. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone J, doi: https://doi.org/10.2136/vzj2016.01.0010

    Google Scholar 

  • Walvoord M A, Voss C I, Wellman T P. 2012. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour Res, 48: W07524

    Google Scholar 

  • Wang G, Hu H, Li T. 2009. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol, 375: 438–449

    Google Scholar 

  • Wang X, Chen R, Yang Y. 2017. Effects of permafrost degradation on the hydrological regime in the source regions of the Yangtze and Yellow Rivers, China. Water, 9: 897

    Google Scholar 

  • Woo M K. 2012. Permafrost Hydrology. Berlin: Springer Science & Business Media

    Google Scholar 

  • Woo M K, Kane D L, Carey S K, Yang D. 2008. Progress in permafrost hydrology in the new millennium. Permafrost Periglac Process, 19: 237–254

    Google Scholar 

  • Wrona F J, Johansson M, Culp J M, Jenkins A, Mård J, Myers-Smith I H, Prowse T D, Vincent W F, Wookey P A. 2016. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J Geophys Res-Biogeosci, 121: 650–674

    Google Scholar 

  • Yang D, Robinson D, Zhao Y, Estilow T, Ye B. 2003. Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J Geophys Res, 108: 4578

    Google Scholar 

  • Yang D, Ye B, L. Kane D. 2004. Streamflow changes over Siberian Yenisei River Basin. J Hydrol, 296: 59–80

    Google Scholar 

  • Yang M, Nelson F E, Shiklomanov N I, Guo D, Wan G. 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci Rev, 103: 31–44

    Google Scholar 

  • Ye B, Yang D, Kane D L. 2003. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour Res, 39: 1200

    Google Scholar 

  • Ye B, Yang D, Zhang Z, Kane D L. 2009. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J Geophys Res, 114: D07102

    Google Scholar 

  • Ye H, Ladochy S, Yang D, Zhang T, Zhang X, Ellison M. 2004. The impact of climatic conditions on seasonal river discharges in Siberia. J Hydrometeorol, 5: 286–295

    Google Scholar 

  • Zhang T, Frauenfeld O W, Serreze M C, Etringer A, Oelke C, McCreight J, Barry R G, Gilichinsky D, Yang D, Ye H, Ling F, Chudinova S. 2005. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res, 110: D16101

    Google Scholar 

  • Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P. 2013. Enhanced poleward moisture transport and amplified northern highlatitude wetting trend. Nat Clim Change, 3: 47–51

    Google Scholar 

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G. 2017. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere, 11: 2527–2542

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91547203), the National Natural Science Foundation of China (Grant No. 41890821), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20050102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxu Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Wang, G., Mao, T. et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Sci. China Earth Sci. 63, 292–302 (2020). https://doi.org/10.1007/s11430-018-9383-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9383-6

Keywords

Navigation