Skip to main content
Log in

Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Oxygen concentration is essential for appropriate metabolism. Hypoxia can exert a significant impact on physiological alteration of the cell and organism. Tibetan Chicken (Gallus gallus) is a Chinese indigenous breed inhabiting in Tibetan areas, which is also a chicken breed living at high altitude for the longest time in the world. It has developed an adaptive mechanism to hypoxia, which is demonstrated by that Tibetan Chicken has much higher hatchability than low-land chicken breeds in high-altitude areas of Tibet. In the present study, Tibetan Chicken fertilized full sib eggs were incubated up to Hamburger-Hamilton stage 43 under 13% and 21% oxygen concentration, respectively. Shouguang Chicken and Dwarf Recessive White Chicken were used as control groups. The hearts in all of the 3 chicken breeds under hypoxic and normoxic conditions were isolated and hybridized to GeneChip® Chicken Genome Array to study molecular mechanisms underlying the adaptation to high altitude of Tibetan Chicken. As a result, 50 transcripts highly expressed in hypoxia are screened out. Among up-regulated genes, some are involved in the gene ontology (GO) such as cell growth, cell difference, muscle contraction and signal transduction. However, the expression levels of 21 transcripts are lower in hypoxia than those in normoxia. Some down-regulated genes take part in cell communication, ion transport, protein amino acid phosphorylation and signal transduction. Interestingly, gene enrichment analyses of these differential gene expressions are mainly associated with immune system response and ion channel activity in response to stimulus. Moreover, the transcriptional expression profiles analyzed by hierarchical clustering and CPP-SOM software in all of the 3 different chicken breeds revealed that Tibetan Chicken is much closely related to Shouguang Chicken rather than Dwarf Recessive White Chicken. In addition, 12 transcripts of Tibetan Chicken breed-specific expressed genes were identified, which seem to result in a more effective and efficient induction of energy demand and signal transduction of transcription and suppression of abnormal development in response to hypoxia. These findings will be beneficial in clarifying the adaptive molecular mechanism of Tibetan Chicken as well as providing new insight into cardiovascular disease at high altitude medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffee O C. The effects of moderate hypoxia and moderate hypoxia plus hypercapnea on cardiac development in chick embryos. Teratology, 1974, 10(3): 275–281 4218376, 10.1002/tera.1420100310, 1:STN:280:CSqC2c7is1A%3D

    Article  PubMed  CAS  Google Scholar 

  2. Strick D M, Waycaster R L, Montani J P, et al. Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol, 1991, 260(4Pt2): H1 385–389 1:STN:280:By6C1cbktVU%3D

    CAS  Google Scholar 

  3. Meuer H J, Hartmann V, Jopp S. Tissue PO2 and growth rate in early chick embryos. Respir Physiol, 1992, 90(2): 227–237 1494722, 10.1016/0034-5687(92)90083-9, 1:STN:280:ByyC2MjnsVI%3D

    Article  PubMed  CAS  Google Scholar 

  4. Miller S L, Green L R, Peebles D M, et al. Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am J Obstet Gynecol, 2002, 186(2): 261–267 11854647, 10.1067/mob.2002.119629, 1:CAS:528:DC%2BD38Xit1Wns70%3D

    Article  PubMed  CAS  Google Scholar 

  5. Semenza G L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol, 2000, 88(4): 1474–1480 10749844, 1:CAS:528:DC%2BD3cXivF2ku74%3D

    PubMed  CAS  Google Scholar 

  6. Villamor E, Kessels C G, Ruijtenbeek K, et al. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. Am J Physiol Regul Integr Comp Physiol, 2004, 287(3): R642–651 15117730, 1:CAS:528:DC%2BD2cXnvVaqtbg%3D

    Article  PubMed  CAS  Google Scholar 

  7. Wangensteen O D, Rahn H, Burton R R, et al. Respiratory gas exchange of high altitude adapted chick embryos. Respir Physiol, 1974, 21(1): 61–70 4846939, 10.1016/0034-5687(74)90007-3, 1:STN:280:CSuB1cfltFE%3D

    Article  PubMed  CAS  Google Scholar 

  8. Stock M K, Metcalfe J. Modulation of growth and metabolism of the chick embryo by a brief (72-hr) change in oxygen availability. J Exp Zool, 1987, 1,(Suppl): 351–356 1:STN:280:DyaL2s3ltlSitQ%3D%3D

    CAS  Google Scholar 

  9. Burton G J, Palmer M E. Development of the chick chorioallantoic capillary plexus under normoxic and normobaric hypoxic and hyperoxic conditions: a morphometric study. J Exp Zool, 1992, 262(3): 291–298 1640200, 10.1002/jez.1402620309, 1:STN:280:By2A2cbgtl0%3D

    Article  PubMed  CAS  Google Scholar 

  10. Crossley D A, Altimiras J. Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol, 2005, 208(Pt1): 31–39 15601875, 10.1242/jeb.01355

    Article  PubMed  Google Scholar 

  11. Wu Ch X, Zhang H, Gou X. Automatization Hypoxia Simulation hatching. China Patent, Z L 200420066829. 3, 2005

  12. Xiao L, Wang K, Teng Y, et al. Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett, 2003, 538(1–3): 117–1124 12633864, 10.1016/S0014-5793(03)00156-X, 1:CAS:528:DC%2BD3sXhvFKisL8%3D

    Article  PubMed  CAS  Google Scholar 

  13. Zheng P Z, Wang K K, Zhang Q Y, et al. Systems analysis of transcriptome and proteome inretinoicacid/arsenictrioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA, 2005, 102: 7653–7658 15894607, 10.1073/pnas.0502825102, 1:CAS:528:DC%2BD2MXkslOnu7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Chandel N S, Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA, 1998, 95(20): 11715–11720 9751731, 10.1073/pnas.95.20.11715, 1:CAS:528:DyaK1cXmsV2hsro%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Ferrara N, Gerber H P, Le Couter J. The biology of VEGF and its receptors. Nat Med, 2003, 9(6): 669–676 12778165, 10.1038/nm0603-669, 1:CAS:528:DC%2BD3sXktFOnur4%3D

    Article  PubMed  CAS  Google Scholar 

  16. Yuan F, Chen Y, Dellian M. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA, 1996, 93(25): 14765–14770 8962129, 10.1073/pnas.93.25.14765, 1:CAS:528:DyaK28XnsVOht78%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Shweiki D, Itin A, Soffer D. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359(6398): 843–845 1279431, 10.1038/359843a0, 1:CAS:528:DyaK38XmsV2gsb4%3D

    Article  PubMed  CAS  Google Scholar 

  18. Abdollahi M R, Lewis R M, Gaunt T R, et al. Quantitated transcript haplotypes (QTH) of AGTR1, reduced abundance of mRNA haplotypes containing 1166C (rs5186: A>C), and relevance to metabolic syndrome traits. Hum Mutat, 2007, 28(4): 365–373 17211857, 10.1002/humu.20454, 1:CAS:528:DC%2BD2sXltVWlsb4%3D

    Article  PubMed  CAS  Google Scholar 

  19. Kimura H, Weisz A, Kurashima Y, et al. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood, 2000, 95(1): 189–197 10607702, 1:CAS:528:DC%2BD3cXhslKhtg%3D%3D

    PubMed  CAS  Google Scholar 

  20. Vendelin M, Kongas O, Saks V. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol, 2000, 278(4): C747–764 10751324, 1:CAS:528:DC%2BD3cXis12it7o%3D

    PubMed  CAS  Google Scholar 

  21. Cuono C B, Marquetand R, Klein M B, et al. Critical role of phosphagens in the energy cascade of cutaneous ischemia and protective action of phosphocreatine analogues in skin flap survival. Plast Reconstr Surg, 1998, 101(6): 1597–1603 9583491, 10.1097/00006534-199805000-00025, 1:STN:280:DyaK1c3kt1OqsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. Salvatore P, Hanash C R, Kido Y, et al. Identification of sirm, a novel insulin-regulated SH3 binding protein that associates with Grb-2 and FYN. J Biol Chem, 1998, 273(12): 6989–6997 9507006, 10.1074/jbc.273.12.6989, 1:STN:280:DyaK1c7nsF2lug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. Patti M E, Butte A J, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A, 2003, 100(14): 8466–8471 12832613, 10.1073/pnas.1032913100, 1:CAS:528:DC%2BD3sXlsFGntbs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Mohler P J, Schott J J, Gramolini A O, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 2003, 421(6923): 634–639 12571597, 10.1038/nature01335, 1:CAS:528:DC%2BD3sXovFKntg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  25. Singh M K, Christoffels V M, Dias J M, et al. TBX20 is essential for cardiac chamber differentiation and repression of TBX2. Development, 2005, 132(12): 2697–2707 15901664, 10.1242/dev.01854, 1:CAS:528:DC%2BD2MXmtF2ls7k%3D

    Article  PubMed  CAS  Google Scholar 

  26. Szeto D P, Griffin K J, Kimelman D. HrT is required for cardiovascular development in zebrafish. Development, 2002, 129(21): 5093–5101 12397116, 1:CAS:528:DC%2BD38XovVOks7s%3D

    PubMed  CAS  Google Scholar 

  27. Shelton E L, Yutzey K E. TBX20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 2007, 302: 376–388 17064679, 10.1016/j.ydbio.2006.09.047, 1:CAS:528:DC%2BD2sXhs1Cnt7s%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Orlandini M, Marconcini L, Ferruzzi R, et al. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci USA, 1996, 93(21): 11675–11680 8876195, 10.1073/pnas.93.21.11675, 1:CAS:528:DyaK28Xmtlansr8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Nuber U A, Kriaucionis S, Roloff T C, et al. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum Mol Genet, 2005, 14(15): 2247–2256 16002417, 10.1093/hmg/ddi229, 1:CAS:528:DC%2BD2MXmt1ert7g%3D

    Article  PubMed  CAS  Google Scholar 

  30. Snow M H. Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec, 1990, 227(4): 437–446 2393096, 10.1002/ar.1092270407, 1:STN:280:By%2BA28ritVI%3D

    Article  PubMed  CAS  Google Scholar 

  31. Cheng G C, Huang F M, Zhou Q X. Chinese native chicken breed id-ioplasm characteristics (in Chinese). Shanghai: Shanghai Scientific and Technical Press, 2000. 96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunJiang Zhao.

Additional information

Supported by National Key Basic Research and Development Program of China (Grant No. 2006CB102101) and the Project of National Fundamental Platform for Scientific Work (Grant No. 2005DKA21100-02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Zhao, C. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue. SCI CHINA SER C 52, 284–295 (2009). https://doi.org/10.1007/s11427-009-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0005-8

Keywords

Navigation