Skip to main content
Log in

Sparse time-frequency representation of nonlinear and nonstationary data

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Adaptive data analysis provides an important tool in extracting hidden physical information from multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(θ(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ′ ⩾ 0. This problem can be formulated as a nonlinear l 0 optimization problem. We have proposed two methods to solve this nonlinear optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some numerical experiments are given to demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach F R, Jenatton R, Mairal J, et al. Optimization with sparsity-inducing penalties. Found Trends Mach Learn, 2012, 4: 1–106

    Article  Google Scholar 

  2. Boashash B. Time-Frequency Signal Analysis: Methods and Applications. Melbourne/New York: Longman-Cheshire/John Wiley, 1992

    Google Scholar 

  3. Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev, 2009, 51: 34–81

    Article  MATH  MathSciNet  Google Scholar 

  4. Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal recovery from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489–509

    Article  MATH  MathSciNet  Google Scholar 

  5. Candès E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207–1223

    Article  MATH  MathSciNet  Google Scholar 

  6. Candès E, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inform Theory, 2006, 52: 5406–5425

    Article  MathSciNet  Google Scholar 

  8. Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33–61

    Article  MathSciNet  Google Scholar 

  9. Combettes P L, Pesquet J C. Proximal splitting methods in signal processing. In: Bauschke H H, Burachik R, Combettes P L, et al., eds. Fixed-point Algorithms for Inverse Problems in Science and Engineering. New York: Springer-Verlag, 2010, 185–212

    Google Scholar 

  10. Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series on Applied Mathematics, vol. 61. Philadelphia: SIAM, 1992

    Book  MATH  Google Scholar 

  11. Daubechies I, Lu J, Wu H. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl Comp Harmon Anal, 2011 30: 243–261

    Article  MATH  MathSciNet  Google Scholar 

  12. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  Google Scholar 

  13. Flandrin P. Time-Frequency/Time-Scale Analysis. San Diego, CA: Academic Press, 1999

    MATH  Google Scholar 

  14. Gabor D. Theory of communication. J Inst Elect Eng, 1946, 93: 429–457

    Google Scholar 

  15. Goldstein T, Osher S. The split Bregman method for L 1-regularized problems. SIAM J Imaging Sci, 2009, 2: 323–343

    Article  MATH  MathSciNet  Google Scholar 

  16. Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Trans Inform Theory, 2003, 49: 3320–3325

    Article  MathSciNet  Google Scholar 

  17. Gross R S. Combinations of Earth Orientation Measurements: SPACE2000, COMB2000, and POLE2000. JPL Publication 01-2. Pasadena, CA: Jet Propulsion Laboratory, 2001

    Google Scholar 

  18. Hou T Y, Shi Z. Adaptive data analysis via sparse time-frequency representation. Adv Adapt Data Anal, 2011, 3: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou T Y, Shi Z. Data-drive time-frequency analysis. Appl Comput Harmon Anal, 2013, 35: 284–308

    Article  MathSciNet  Google Scholar 

  20. Hou T Y, Shi Z. Sparse time-frequency decomposition by adaptive basis pursuit. Preprint

  21. Hou T Y, Shi Z, Tavallali P. Convergence of a data-driven time-frequency analysis method. Appl Comput Harmon Anal, submitted, 2013

    Google Scholar 

  22. Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci, 1998, 454: 903–995

    Article  MATH  MathSciNet  Google Scholar 

  23. Jomes D L, Parks T W. A high resolution data-adaptive time-frequency representation. IEEE Trans Acoust Speech Signal Process, 1990, 38: 2127–2135

    Article  Google Scholar 

  24. Loughlin P J, Tracer B. On the amplitude- and frequency-modulation decomposition of signals. J Acoust Soc Amer, 1996, 100: 1594–1601

    Article  Google Scholar 

  25. Lovell B C, Williamson R C, Boashash B. The relationship between instantaneous frequency and time-frequency representations. IEEE Trans Signal Process, 1993, 41: 1458–1461

    Article  MATH  Google Scholar 

  26. Mallat S. A Wavelet Tour of Signal Processing: the Sparse Way. New York: Academic Press, 2009

    Google Scholar 

  27. Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41: 3397–3415

    Article  MATH  Google Scholar 

  28. Meville W K. Wave modulation and breakdown. J Fluid Mech, 1983, 128: 489–506

    Article  Google Scholar 

  29. Needell D, Tropp J. CoSaMP: Iterative signal recovery from noisy samples. Appl Comput Harmon Anal, 2008, 26: 301–321

    Article  MathSciNet  Google Scholar 

  30. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. J Found Comput Math, 2009, 9: 317–334

    Article  MATH  MathSciNet  Google Scholar 

  31. Olhede S, Walden A T. The Hilbert spectrum via wavelet projections. Proc R Soc Lond Ser A Math Phys Eng Sci, 2004, 460: 955–975

    Article  MATH  MathSciNet  Google Scholar 

  32. Pahlevan N M, Tavallali P, Petrasek D, et al. Systems science and a novel insight into cardiovascular physiology. Science, submitted, 2013

    Google Scholar 

  33. Pesquet J C, Pustelnik N. A parallel inertial proximal optimization method. Pacific J Optim, 2012, 8: 273–305

    MATH  MathSciNet  Google Scholar 

  34. Picinbono B. On instantaneous amplitude and phase signals. IEEE Trans Signal Process, 1997, 45: 552–560

    Article  Google Scholar 

  35. Qian S, Chen D. Signal representation using adaptive normalized Gaussian functions. Signal Processing, 1994, 36: 1–11

    Article  MATH  MathSciNet  Google Scholar 

  36. Qian S, Chen D. Joint Time-Frequency Analysis: Methods and Applications. New York: Prentice Hall, 1996

    Google Scholar 

  37. Rice S O. Mathematical analysis of random noise. Bell Syst Tech J, 1944, 23: 282–310

    Article  MATH  MathSciNet  Google Scholar 

  38. Setzer S, Steidl G, Teuber T. Deblurring Poissonian images by split Bregman techniques. J Visual Commun Image Rep, 2010, 21: 193–199

    Article  Google Scholar 

  39. Shekel J. Instantaneous frequency. Proc IRE, 1953, 41: 548–548

    Article  Google Scholar 

  40. Shi Y, Li K F, Yung Y L, et al. A decadal microwave record of tropical air temperature from AMSU-A/Aqua observations. Climate Dynamics, in press, 2013, doi: 10.1007/s00382-013-1696-x

    Google Scholar 

  41. Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory, 2007, 53: 4655–4666

    Article  MathSciNet  Google Scholar 

  42. Van der Pol B. The fundamental principles of frequency modulation. Proc Inst Elect Eng, 1946, 93: 153–158

    Google Scholar 

  43. Wu H T. Instantaneous frequency and wave shape functions (I). Appl Comput Harmon Anal, 2012, in press, doi: 10.1016/j.acha.2012.08.008

    Google Scholar 

  44. Wu Z, Huang N E. Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal, 2009, 1: 1–41

    Article  Google Scholar 

  45. Wu Z, Huang N E, Long S R, et al. Trend, detrend, and the variability of nonlinear and non-stationary time series. Proc Natl Acad Sci USA, 2007, 104: 14889–14894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Yizhao Hou.

Additional information

Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T.Y., Shi, Z. Sparse time-frequency representation of nonlinear and nonstationary data. Sci. China Math. 56, 2489–2506 (2013). https://doi.org/10.1007/s11425-013-4733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4733-7

Keywords

MSC(2010)

Navigation