Skip to main content
Log in

Abstract principal component analysis

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We present the basic idea of abstract principal component analysis (APCA) as a general approach that extends various popular data analysis techniques such as PCA and GPCA. We describe the mathematical theory behind APCA and focus on a particular application to mode extractions from a data set of mixed temporal and spatial signals. For illustration, algorithmic implementation details and numerical examples are presented for the extraction of a number of basic types of wave modes including, in particular, dynamic modes involving spatial shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benton E R, Platzman G W. A table of solutions of the one-dimensional burgers equation. Quart Appl Math, 1972, 30, 195-212

    Google Scholar 

  2. Borggaard J, Hay A, Pelletier D. Interval-based reduced-order models for unsteady fluid flow. Int J Numer Anal Model, 2007, 4: 353–367

    MATH  MathSciNet  Google Scholar 

  3. Cardoso J F. Blind signal separation: Statistical principles. IEEE, 1998, 86: 2009–2025

    Article  Google Scholar 

  4. Comon P. Independent component analysis: A new concept? Signal Process, 1994, 36: 287–314

    Article  MATH  Google Scholar 

  5. Du Q. Intelligent and informative scientific computation, trends and examples. In: Xin Z P, Lau K S, Yau S T, eds. Proceedings of Third International Congress of Chinese Mathematicians. Studies in Advanced Mathematics, vol. 42. Providence, RI: Amer Math Soc, 2008, 731–748

    Google Scholar 

  6. Gaeta M, Lacoume J L. Source separation without prior knowledge: The maximum likelihood solution. Proc EUSIPO, 1990, 2: 621–624

    Google Scholar 

  7. Girolami M, Fyfe C. Negentropy and kurtosis as projection pursuit indices provide generalized ica algorithms. In: Advances in Neural Information Processing Systems. Colorado: NIPS96 Workshop, 1996, 752–763

    Google Scholar 

  8. Harris J. Algebraic Geometry: A First Course. New York: Springer-Verlag, 1992

    Book  MATH  Google Scholar 

  9. Hyvärinen A. Survey on independent component analysis. Nat Comput Surv, 1999, 2: 94–128

    Google Scholar 

  10. Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput, 1997, 6: 1483–1492

    Article  Google Scholar 

  11. Jackson J. A User’s Guide to Principal Components. New York: John Wiley and Sons, 1991

    Book  MATH  Google Scholar 

  12. Jolliffe I. Principal Component Analysis. New York: Springer-Verlag, 1986

    Book  Google Scholar 

  13. Karhunen J, Joutsensalo J. Generalizations of principal component analysis, optimization problems, and neural networks. Neural Networks, 1995, 7: 113–127

    Article  Google Scholar 

  14. Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 1998, 22: 5–20

    Article  MATH  Google Scholar 

  15. Lee H C, Burkardt J, Gunzburger M. POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Methods Appl Mech Engrg, 2006, 196: 337–355

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee T, Girolami M, Bell A J, et al. A unifying information-theoretic framework for independent component analysis. J Math Comput Model, 1998, 39: 1–21

    MathSciNet  Google Scholar 

  17. Li T. Abstract principal component analysis and applications to model reduction. PhD Thesis. Pennsylvania: The Pennsylvania State University, 2009

    Google Scholar 

  18. Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998, 10: 1299–1319

    Article  Google Scholar 

  19. Tipping M, Bishop C. Probabilistic principal component analysis. J R Stat Soc, 1999, 61: 611–622

    Article  MATH  MathSciNet  Google Scholar 

  20. Vidal R. Generalized principal component analysis (GPCA): An algebraic geometric approach to subspace clustering and motion segmentation. PhD Thesis. California: University of California at Berkeley, 2003

    Google Scholar 

  21. Vidal R. Subspace clustering. Signal Process Mag, 2011, 28: 52–68

    Article  Google Scholar 

  22. Vidal R, Ma Y, Sastry S. Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell, 2005, 27: 1–15

    Article  Google Scholar 

  23. Zwillinger D. Handbook of Differential Equations, 3rd ed. Boston: Academic Press, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Du.

Additional information

Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Du, Q. Abstract principal component analysis. Sci. China Math. 56, 2783–2798 (2013). https://doi.org/10.1007/s11425-013-4715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4715-9

Keywords

MSC(2010)

Navigation