Skip to main content
Log in

Dirac concentrations in a chemostat model of adaptive evolution

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper deals with a non-local parabolic equation of Lotka-Volterra type that describes the evolution of phenotypically structured populations. Nonlinearities appear in these systems to model interactions and competition phenomena leading to selection. In this paper, the equation on the structured population is coupled with a differential equation on the nutrient concentration that changes as the total population varies.

Different methods aimed at showing the convergence of the solutions to a moving Dirac mass are reviewed. Using either weak or strong regularity assumptions, the authors study the concentration of the solution. To this end, BV estimates in time on appropriate quantities are stated, and a constrained Hamilton-Jacobi equation to identify where the solutions concentrates as Dirac masses is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackleh, A. S., Fitzpatrick, B. G. and Thieme, H. R., Rate distributions and survival of the fittest: A formulation on the space of measures (electronic), Discrete Contin. Dyn. Syst. Ser. B, 5(4), 2005, 917–928.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M. and Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997.

    Book  MATH  Google Scholar 

  3. Barles, G., Solutions de Viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Berlin Heidelberg, 1994.

    MATH  Google Scholar 

  4. Barles, G., Evans, L. C. and Souganidis, P. E., Wavefront propagation for reaction diffusion systems of PDE, Duke Math. J., 61(3), 1990, 835–858.

    Article  MathSciNet  MATH  Google Scholar 

  5. Barles, G., Mirrahimi, S. and Perthame, B., Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16(3), 2009, 321–340.

    MathSciNet  MATH  Google Scholar 

  6. Barles, G. and Perthame, B., Concentrations and constrained Hamilton-Jacobi equations arising in adpative dynamics, Contemporary Mathematics, 439, 2007, 57.

    Article  MATH  Google Scholar 

  7. Barles, G. and Perthame, B., Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57(7), 2008, 3275–3301.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bethuel, F., Brézis, H. and Helein, F., Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, 1994.

    MATH  Google Scholar 

  9. Bouin, E. and Mirrahimi, S., A Hamilton-Jacobi limit for a model of population stuctured by space and trait, Comm. Math. Sci., 13(6), 2015, 1431–1452.

    Article  MATH  Google Scholar 

  10. Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.

    Book  Google Scholar 

  11. Brézis, H. and Friedman, A., Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures App. (9), 62(1), 1983, 73–97.

    MathSciNet  MATH  Google Scholar 

  12. Brunel, N. and Hakim, V., Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Computation, 11(7), 1999, 1621–1671.

    Article  Google Scholar 

  13. Carrillo, J. A., Cuadrado, S. and Perthame, B., Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Mathematical Biosciences, 205(1), 2007, 137–161.

    Article  MathSciNet  MATH  Google Scholar 

  14. Champagnat, N., Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics, PhD thesis, Université de Nanterre-Paris X, 2004.

    Google Scholar 

  15. Champagnat, N., Ferrière, R. and Ben Arous, G., The canonical equation of adaptive dynamics: A mathematical view, Selection, 2(1), 2002, 73–83.

    Article  Google Scholar 

  16. Champagnat, N., Ferrière, R. and Méléard, S., Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theoretical Population Biology, 69(3), 2006, 297–321.

    Article  MATH  Google Scholar 

  17. Champagnat, N., Ferrière, R. and Méléard, S., Individual-based probabilistic models of adaptive evolution and various scaling approximations, 59, Progress in Probability, Birkhäuser, Boston, 2008.

    MATH  Google Scholar 

  18. Champagnat, N. and Jabin, P.-E., The evolutionary limit for models of populations interacting competitively via several resources, Journal of Differential Equations, 251(1), 2011, 176–195.

    Article  MathSciNet  MATH  Google Scholar 

  19. Champagnat, N., Jabin, P.-E. and Raoul, G., Convergence to equilibrium in competitive Lotka-Volterra equations and chemostat systems, C. R. Acad. Sci. Paris Sér. I Math., 348(23–24), 2010, 1267–1272.

    Article  MATH  Google Scholar 

  20. Crandall, M. G., Ishii, H. and Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27(1), 1992, 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  21. Desvillettes, L., Jabin, P.-E., Mischler, S. and Raoul, G., On mutation selection dynamics, Commun. Math. Sci., 6(3), 2008, 729–747.

    Article  MathSciNet  MATH  Google Scholar 

  22. Dieckmann, U. and Law, R., The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biology, 34(5–6), 1996, 579–612.

    Article  MathSciNet  MATH  Google Scholar 

  23. Diekmann, O., A beginner’s guide to adaptive dynamics, Banach Center Publications, 63, 2004, 47–86.

    MathSciNet  MATH  Google Scholar 

  24. Diekmann, O., Jabin, P.-E., Mischler, S. and Perthame, B., The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theoretical Population Biology, 67(4), 2005, 257–271.

    Article  MATH  Google Scholar 

  25. Evans, L. C. and Souganidis, P. E., A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., 38(1), 1989, 141–172.

    Article  MathSciNet  MATH  Google Scholar 

  26. Evans, L. C., Partial differential equations, 19, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  27. Fleming, W. H. and Soner, H. M., Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics 25, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  28. Geritz, S. A. H., Kisdi, E., Meszena, G. and Metz, J. A. J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12(1), 1998, 35–57.

    Article  Google Scholar 

  29. Hofbauer, J. and Sigmund, K., Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  30. Hofbauer, J. and Sigmund, K., Evolutionary game dynamics, Bulletin of the American Mathematical Society, 40(4), 2003, 479–519.

    Article  MathSciNet  MATH  Google Scholar 

  31. Freidlin M. I., Functional Integration and Partial Differential Equations, 109, Princeton University Press, Princeton, 1985.

    MATH  Google Scholar 

  32. Freidlin M. I., Limit theorems for large deviations and reaction-diffusion equations, The Annals of Probability, 13(3), 1985, 639–675.

    Article  MathSciNet  MATH  Google Scholar 

  33. Lorz, A., Mirrahimi, S. and Perthame, B., Dirac mass dynamics in multidimensional nonlocal parabolic equations, Commun. Part. Diff. Eq., 36(6), 2011, 1071–1098.

    Article  MathSciNet  MATH  Google Scholar 

  34. Lorz, A. and Perthame, B., Long-term behaviour of phenotypically structured models, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 470(2167), 2014, 20140089, 10.

    Article  MathSciNet  Google Scholar 

  35. Meszena, G., Gyllenberg, M., Jacobs, F. J. and Metz, J. A. J., Link between population dynamics and dynamics of Darwinian evolution, Physical Review Letters, 95(7), 2005, 078105.

    Article  Google Scholar 

  36. Mirrahimi, S., Phénomènes de concentration dans certaines EDPs issues de la biologie, PhD thesis, Universit é Pierre et Marie Curie-Paris VI,2011.

    Google Scholar 

  37. Mirrahimi, S., Adaptation and migration of a population between patches, Discrete and Continuous Dynamical System -B (DCDS-B), 18.3s, 2013, 753–768.

    MathSciNet  MATH  Google Scholar 

  38. Mirrahimi, S. and Perthame, B., Asymptotic analysis of a selection model with space, J. Math. Pures Appl., to appear.

  39. Mirrahimi, S., Perthame, B., Bouin, E. and Millien, P., Population formulation of adaptative mesoevolution: Theory and dynamics, J. F. Rodrigues and F. Chalub (eds.), The Mathematics of Darwin’s Legacy, Mathematics and Biosciences in Interaction, Springer-Verlag, New York, 2011.

  40. Mirrahimi, S. and Roquejoffre, J.-M., Uniqueness in a class of Hamilton-Jacobi equations with constraints, Comptes Rendus Mathématiques, 2015.

    MATH  Google Scholar 

  41. Perthame, B., Transport equations in biology, Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2007.

    MATH  Google Scholar 

  42. Raoul, G., Etude qualitative et numérique d’équations aux dérivées partielles issues des sciences de la nature, PhD thesis, ENS Cachan, 2009.

    Google Scholar 

  43. Raoul, G., Local stability of evolutionary attractors for continuous structured populations, Monatsh Math., 165(1), 2012, 117–144.

    Article  MathSciNet  MATH  Google Scholar 

  44. Smith, H. L. and Waltman, P., The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, Cambridge, 1994.

    MATH  Google Scholar 

  45. Maynard Smith, J., Evolution and the Theory of Games, Cambridge Univ. Press, Cambridge, 1982.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lorz.

Additional information

In honor of the immense scientific influence of Haïm Brezis

This work was supported by ANR-13-BS01-0004 funded by the French Ministry of Research (ANR Kibord).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorz, A., Perthame, B. & Taing, C. Dirac concentrations in a chemostat model of adaptive evolution. Chin. Ann. Math. Ser. B 38, 513–538 (2017). https://doi.org/10.1007/s11401-017-1081-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-017-1081-x

Keywords

2000 MR Subject Classification

Navigation