Skip to main content

Advertisement

Log in

The Moser-Trudinger-Onofri inequality

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.

Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods (in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality. In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally, a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S. and Tanaka, K., Trudinger type inequalities in RNand their best exponents, Proc. Amer. Math. Soc., 128(7), 2000, 2051–2057. DOI: 10.1090/S0002-9939-99-05180-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, A., Markowich, P., Toscani, G. and Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26(1–2), 2001, 43–100.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11(4), 1976, 573–598.

    MathSciNet  MATH  Google Scholar 

  4. Aubin, T., Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32(2), 1979, 148–174. DOI: 10.1016/0022-1236(79)90052-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Baernstein, A. II, A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, Cortona, 1992; Sympos. Math., XXXV, Cambridge Univ. Press, Cambridge, 1994, 4,7–91.

    Google Scholar 

  6. Baernstein, A. II and Taylor, B. A., Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43(2), 1976, 245–268.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakry, D. and émery, M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., 299(15), 1984, 775–778.

    MATH  Google Scholar 

  8. Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138(1), 1993, 213–242. DOI: 10.2307/2946638

    Article  MathSciNet  MATH  Google Scholar 

  9. Bentaleb, A., Inégalité de Sobolev pour l’opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317(2), 1993, 187–190.

    MathSciNet  MATH  Google Scholar 

  10. Bidaut-Véron, M.-F. and Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106(3), 1991, 489–539. DOI: 10.1007/BF01243922

    Article  MathSciNet  MATH  Google Scholar 

  11. Blanchet, A., Carlen, E. A. and Carrillo, J. A., Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262(5), 2012, 2142–2230. DOI: 10.10 16/j.jfa.2011.12.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Bliss, G., An integral inequality, Journal of the London Mathematical Society, 1(1), 1930, 40.

    Article  MathSciNet  Google Scholar 

  13. Branson, T., Fontana, L. and Morpurgo, C., Moser-Trudinger and Beckner-Onofris inequalities on the CRsphere, Annals of Mathematics, 177, 2013, 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  14. Brothers, J. E. and Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 1988, 153–179.

    MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Kohn, R. and Nirenberg, L., First order interpolation inequalities with weights, Compositio Math., 53(3), 1984, 259–275.

    MathSciNet  MATH  Google Scholar 

  16. Calvez, V. and Corrias, L., The parabolic-parabolic Keller-Segel model in ℝ2, Commun. Math. Sci., 6(2), 2008, 417–447.

    Article  MathSciNet  MATH  Google Scholar 

  17. Carlen, E. A., Carrillo, J. A. and Loss, M., Hardy-Littlewood-Sobolev inequalities via fast diffusion flows, Proc. Natl. Acad. Sci. USA, 107(46), 2010, 19696–19701. DOI: 10.1073/pnas.1008323107

    Article  MathSciNet  MATH  Google Scholar 

  18. Carlen, E. A. and Figalli, A., Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation, Duke Math. J., 162(3), 2013, 579–625. DOI: 10.1215/00127094-2019931

    Article  MathSciNet  MATH  Google Scholar 

  19. Carlen, E. A. and Loss, M., Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S;n, Geom. Funct. Anal., 2(1), 1992, 9,0–104. DOI: 10.1007/BF01895706

    Article  MathSciNet  MATH  Google Scholar 

  20. Carleson, L. and Chang, S. Y. A., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2), 110(2), 1986, 113–127.

    MathSciNet  MATH  Google Scholar 

  21. Carrillo, J. A., Jüngel, A., Markowich, P. A., et al., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133(1), 2001, 1–82. DOI: 10.10 07/s006050170032

    Article  MathSciNet  MATH  Google Scholar 

  22. Carrillo, J. A. and Toscani, G., Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49(1), 2000, 113–142. DOI: 10.1512/iumj.2000.49.1756

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, S. Y. A., Extremal functions in a sharp form of Sobolev inequality, Proceedings of the International Congress of Mathematicians, Vol. 1–2, Berkeley, Calif., 1986; A. M. S., Providence, RI, 1987, 715–723.

    Google Scholar 

  24. Chang, S. Y. A. and Yang, P. C., Prescribing Gaussian curvature on S 2, Acta Math., 159(3–4), 1987, 215–259. DOI: 10.1007/BF02392560

    Article  MathSciNet  MATH  Google Scholar 

  25. Chang, S. Y. A. and Yang, P. C., Conformal deformation of metrics on S 2, J. Differential Geom., 27(2), 1988, 259–296.

    MathSciNet  MATH  Google Scholar 

  26. Chang, S. Y. A. and Yang, P. C., The inequality of Moser and Trudinger and applications to conformal geometry, dedicated to the memory of Jürgen K. Moser), Comm. Pure Appl. Math., 56(8), 2003, 1135–1150. DOI: 10.1002/cpa.3029

    Article  MathSciNet  MATH  Google Scholar 

  27. Cordero-Erausquin, D., Nazaret, B. and Villani, C., A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182(2), 2004, 307–332. DOI: 10.1016/S0001-8708(03)00080-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Del Pino, M. and Dolbeault, J., Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81(9), 2002, 847–875. DOI: 10.1016/S0021-7824(02)01266-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Del Pino, M. and Dolbeault, J., The Euclidean Onofri inequality in higher dimensions, Int. Math. Res. Not. IMRN, 15, 2013, 360, –3611.

    MathSciNet  Google Scholar 

  30. Dolbeault, J., Sobolev and Hardy-Littlewood-Sobolev inequalities: Duality and fast diffusion, Math. Res. Lett., 18(6), 2011, 1037–1050.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dolbeault, J., Esteban, M. J., Kowalczyk, M. and Loss, M., Sharp interpolation inequalities on the sphere: New methods and consequences, Chin. Ann. Math., 34B(1), 2013, 99–112.

    Article  MathSciNet  MATH  Google Scholar 

  32. Dolbeault, J., Esteban, M. J., Kowalczyk, M. and Loss, M., Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7(4), 2014, 695–724.

    Article  MathSciNet  MATH  Google Scholar 

  33. Dolbeault, J., Esteban, M. J. and Laptev, A., Spectral estimates on the sphere, Analysis PDE, 7(2), 2014, 435–460.

    Article  MathSciNet  MATH  Google Scholar 

  34. Dolbeault, J., Esteban, M. J., Laptev, A. and Loss, M., One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows, Journal of the London Mathematical Society, 90(2), 2014, 525–550.

    Article  MathSciNet  MATH  Google Scholar 

  35. Dolbeault, J., Esteban, M. J., Laptev, A. and Loss, M., Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates, Comptes Rendus Mathématique, 351(1, 1–12), 2013, 437–440.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dolbeault, J., Esteban, M. J. and Loss, M., Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., 267(5), 2014, 1338–1363.

    Article  MathSciNet  MATH  Google Scholar 

  37. Dolbeault, J., Esteban, M. J. and Tarantello, G., The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(2), 2008, 313–341.

    MathSciNet  MATH  Google Scholar 

  38. Dolbeault, J., Esteban, M. J. and Tarantello, G., Multiplicity results for the assigned Gauss curvature problem in ℝ2, Nonlinear Anal., 70(8), 2009, 2870–2881. DOI: 10.1016/j.na.2008.12.040

    Article  MathSciNet  MATH  Google Scholar 

  39. Dolbeault, J. and Jankowiak, G., Sobolev and Hardy-Littlewood-Sobolev inequalities, J. Differential Equations, 257(6), 2014, 1689–1720.

    Article  MathSciNet  MATH  Google Scholar 

  40. Dolbeault, J. and Toscani, G., Improved interpolation inequalities, relative entropy and fast diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30(5), 2013, 917–934. DOI: 10.1016/j.ani hpc.2012.12.004

    Article  MathSciNet  MATH  Google Scholar 

  41. Flucher, M., Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67(3), 1992, 47, 1–497. DOI:10.1007/BF02566514

    Article  MathSciNet  MATH  Google Scholar 

  42. Fontenas, É., Sur les constantes de Sobolev des variétés Riemanniennes compactes et les fonctions extrémales des sphères, Bull. Sci. Math., 121(2), 1997, 71–96.

    MathSciNet  MATH  Google Scholar 

  43. Fontenas, É., Sur les minorations des constantes de Sobolev et de Sobolev logarithmiques pour les opérateurs de Jacobi et de Laguerre, Séminaire de Probabilités, XXXII, Lecture Notes in Math., Vol. 1686, Springer-Verlag, Berlin, 1998, 1, 4–29. DOI: 10.1007/BFb0101747

    MathSciNet  Google Scholar 

  44. Gajewski, H. and Zacharias, K., Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195, 1998, 77–114. DOI: 10.1002/mana.19981950106

    Article  MathSciNet  MATH  Google Scholar 

  45. Ghigi, A., On the Moser-Onofri and Prékopa-Leindler inequalities, Collect. Math., 56(2), 2005, 143–156.

    MathSciNet  MATH  Google Scholar 

  46. Ghoussoub, N. and Lin, C.-S., On the best constant in the Moser-Onofri-Aubin inequality, Comm. Math. Phys., 298(3), 2010, 869–878. DOI: 10.1007/s00220-010-1079-7

    Article  MathSciNet  MATH  Google Scholar 

  47. Ghoussoub, N. and Moradifam, A., Functional inequalities: New perspectives and new applications, Mathematical Surveys and Monographs, Vol. 187, A. M. S., Providence, RI, 2013. ISBN 978-0-8218-9152-0

  48. Gidas, B. and Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34(4), 1981, 525–598. DOI: 10.1002/cpa.3160340406

    Article  MathSciNet  MATH  Google Scholar 

  49. Hersch, J., Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A–B, 270, 1970, A1645–A1648.

    MathSciNet  Google Scholar 

  50. Hong, C. W., A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97(4), 1986, 737–747. DOI: 10.2307/2045939

    Article  MathSciNet  MATH  Google Scholar 

  51. Kawohl, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., Vol. 1150, Springer-Verlag, Berlin, 1985. ISBN 3-540-15693-3

  52. Lam, N. and Lu, G., A new approach to sharp Moser-Trudinger and Adams type inequalities: A rearrangement-free argument, J. Differential Equations, 255(3), 2013, 298–325. DOI: 10.1016/j.jde. 2013.04.005

    Article  MathSciNet  MATH  Google Scholar 

  53. DIFaddLieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118(2), 1983, 349–374. DOI: 10.2307/2007032

    Article  MathSciNet  Google Scholar 

  54. Lieb, E. H. and Loss, M., Analysis, Graduate Studies in Mathematics, Vol. 14, 2nd edition, A. M. S., Providence, RI,2001. ISBN 0-8218-2783-9

    Google Scholar 

  55. McCann, R. J., Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80(2), 1995, 309–323. DOI: 10.1215/S0012-7094-95-08013-2

    Article  MathSciNet  MATH  Google Scholar 

  56. McCann, R. J., A convexity principle for interacting gases, Adv. Math., 128(1), 1997, 153–179. DOI: 10.1006/aima.1997.1634

    Article  MathSciNet  MATH  Google Scholar 

  57. DIFadd McLeod, J. B. and Peletier, L. A., Observations on Moser’s inequality, Arch. Rational Mech. Anal., 106(3), 1989, 261–285. DOI: 10.1007/BF00281216

    Article  MathSciNet  Google Scholar 

  58. Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 107, 7–1092, 1970–1971.

  59. Newman, W. I., A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity I, J.Math. Phys., 25(10), 1984, 3120–3123.

    Article  MathSciNet  MATH  Google Scholar 

  60. Okikiolu, K., Extremals for logarithmic Hardy-Littlewood-Sobolev inequalities on compact manifolds, Geom. Funct. Anal., 17(5), 2008, 1655–1684. DOI: 10.1007/s00039-007-0636-5

    Article  MathSciNet  MATH  Google Scholar 

  61. Onofri, E., On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86(3), 1982, 321–326.

    Article  MathSciNet  MATH  Google Scholar 

  62. Osgood, B., Phillips, R. and Sarnak, P., Extremals of determinants of Laplacians, J. Funct. Anal., 80(1), 1988, 14,8–211. DOI: 10.1016/0022-1236(88)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  63. Ralston, J., A Lyapunov functional for the evolution of solutions to the porous medium equation to selfsimilarity II, J. Math. Phys., 25(10), 1984, 3124–3127.

    Article  MathSciNet  MATH  Google Scholar 

  64. Rosen, G., Minimum value for c in the Sobolev inequality ∥ϕ 3∥ ≤ c ∥▽ϕ3, SIAM J. Appl. Math., 21, 1971, 30–32.

  65. Rubinstein, Y. A., On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal., 255(9), 2008, 2641–2660. DOI: 10.1016/j.jfa.2007.10.009

    Article  MathSciNet  MATH  Google Scholar 

  66. Rubinstein, Y. A., Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218(5), 2008, 1526–1565. DOI: 10.1016/j.aim.2008.03.017

    Article  MathSciNet  MATH  Google Scholar 

  67. Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110, 1976, 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  68. Trudinger, N., On imbeddings into orlicz spaces and some applications, Indiana Univ. Math. J., 17, 1968, 473–483.

    Article  MathSciNet  Google Scholar 

  69. Villani, C., Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 338, Springer-Verlag, Berlin, 2009. ISBN 978-3-540-71049-3. DOI: 10.1007/978-3-540-71050-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

This work was supported by the Projects STAB and Kibord of the French National Research Agency (ANR), the Project NoNAP of the French National Research Agency (ANR) and the ECOS Project (No. C11E07).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolbeault, J., Esteban, M.J. & Jankowiak, G. The Moser-Trudinger-Onofri inequality. Chin. Ann. Math. Ser. B 36, 777–802 (2015). https://doi.org/10.1007/s11401-015-0976-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0976-7

Keywords

2000 MR Subject Classification

Navigation