Skip to main content
Log in

Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs)

  • PCBs Risk Evaluation and Environmental Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs), a group of 209 congeners that differ in the number and position of chlorines on the biphenyl ring, are anthropogenic chemicals that belong to the persistent organic pollutants (POPs). For many years, PCBs have been a topic of interest because of their biomagnification in the food chain and their environmental persistence. PCBs with fewer chlorine atoms, however, are less persistent and more susceptible to metabolic attack, giving rise to chemicals characterized by the addition of one or more hydroxyl groups to the chlorinated biphenyl skeleton, collectively known as hydroxylated PCBs (OH-PCBs). In animals and plants, this biotransformation of PCBs to OH-PCBs is primarily carried out by cytochrome P-450-dependent monooxygenases. One of the reasons for infrequent detection of lower chlorinated PCBs in serum and other biological matrices is their shorter half-lives, and their metabolic transformation, resulting in OH-PCBs or their conjugates, such as sulfates and glucuronides, or macromolecule adducts. Recent biomonitoring studies have reported the presence of OH-PCBs in human serum. The occurrence of OH-PCBs, the size of this group (there are 837 mono-hydroxyl PCBs alone), and their wide spectra of physical characteristics (pKa’s and log P’s ranging over 5 to 6 orders of magnitude) give rise to a multiplicity of biological effects. Among those are bioactivation to electrophilic metabolites that can form covalent adducts with DNA and other macromolecules, interference with hormonal signaling, inhibition of enzymes that regulate cellular concentrations of active hormones, and interference with the transport of hormones. This new information creates an urgent need for a new perspective on these often overlooked metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AIHA 2013: Potential hazards of PCBs in the building environment

  • Amano I, Miyazaki W, Iwasaki T, Shimokawa N, Koibuchi N (2010) The effect of hydroxylated polychlorinated biphenyl (OH-PCB) on thyroid hormone receptor (TR)-mediated transcription through native-thyroid hormone response element (TRE). Ind Health 48:115–118

    Article  CAS  Google Scholar 

  • Amaro AR, Oakley GG, Bauer U, Spielmann HP, Robertson LW (1996) Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 9:623–629

    Article  CAS  Google Scholar 

  • Antunes-Fernandes EC, Bovee TF, Daamen FE, Helsdingen RJ, van den Berg M, van Duursen MB (2011) Some OH-PCBs are more potent inhibitors of aromatase activity and (anti-) glucocorticoids than non-dioxin like (NDL)-PCBs and MeSO(2)-PCBs. Toxicol Lett 206:158–165

  • ATSDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Toxicological Profiles, Atlanta, GA

    Google Scholar 

  • ATSDR (2011) Addendum to the toxicological profile for polychlorinated biphenyls (PCBs). Atlanta, GA

    Google Scholar 

  • Ballschmiter K, Zell M (1980) Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Z Anal Chem 302:20–31

    Article  CAS  Google Scholar 

  • Block WD, Cornish HH (1959) Metabolism of biphenyl and 4-chlorobiphenyl in the rabbit. J Biol Chem 234:3301–3302

    CAS  Google Scholar 

  • Borgert CJ, Mihaich EM, Quill TF, Marty MS, Levine SL, Becker RA (2011) Evaluation of EPA’s Tier 1 Endocrine Screening Battery and recommendations for improving the interpretation of screening results. Regul Toxicol Pharmacol RTP 59:397–411

    Article  CAS  Google Scholar 

  • Brodsky J, Ballschmiter K (1988) Reversed phase liquid chromatography of PCBs as a basis for the calculation of water solubility and log Kow for polychlorobiphenyls. Z Anal Chem 331:295–301

    Article  CAS  Google Scholar 

  • CDC (2013): National Biomonitoring Program. Exposure reports and updated tables (2013). Centers for Disease Control and Prevention

  • Currado GM, Harrad S (1998) Comparison of polychlorinated biphenyl concentrations in indoor and outdoor air and the potential significance of inhalation as a human exposure pathway. Environ Sci Technol 32:3043–3047

    Article  CAS  Google Scholar 

  • Dhakal K, He X, Lehmler HJ, Teesch LM, Duffel MW, Robertson LW (2012) Identification of sulfated metabolites of 4-chlorobiphenyl (PCB3) in the serum and urine of male rats. Chem Res Toxicol 25:2796–2804

    Article  CAS  Google Scholar 

  • Dhakal K, Adamcakova-Dodd A, Lehmler HJ, Thorne PS, Robertson LW (2013) Sulfate conjugates are urinary markers of inhalation exposure to 4-chlorobiphenyl (PCB3). Chem Res Toxicol 26:853–855

    Article  CAS  Google Scholar 

  • Dhakal K, Uwimana E, Adamcakova-Dodd A, Thorne PS, Lehmler HJ, Robertson LW (2014) Disposition of phenolic and sulfated metabolites after inhalation exposure to 4-chlorobiphenyl (PCB3) in female rats. Chem Res Toxicol 27:1411–1420

    Article  CAS  Google Scholar 

  • Ekuase EJ, Liu Y, Lehmler HJ, Robertson LW, Duffel MW (2011) Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1. Chem Res Toxicol 24:1720–1728

    Article  CAS  Google Scholar 

  • Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C, Robertson LW (2003) Polychlorinated biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. Toxicol Appl Pharmacol 186:55–62

    Article  CAS  Google Scholar 

  • Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C, Robertson LW (2004) Initiating activity of 4-chlorobiphenyl metabolites in the resistant hepatocyte model. Toxicol Sci 79:41–46

    Article  CAS  Google Scholar 

  • Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ (2015) PCB126 inhibits adipogenesis of human preadipocytes. Toxicol in vitro 29:132–141

  • Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW (2016a) PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci 149:98–110

    Article  CAS  Google Scholar 

  • Gadupudi GS, Klingelhutz AJ, Robertson LW (2016b): Diminished phosphorylation of CREB is a key event in the dysregulation of gluconeogenesis and glycogenolysis in PCB126 hepatotoxicity. Chem Res Toxicol 29:1504–1509

  • Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW (2013) Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect 121:657–662

    Article  Google Scholar 

  • Grimm FA, He X, Teesch LM, Lehmler HJ, Robertson LW, Duffel MW (2015a) Tissue distribution, metabolism, and excretion of 3,3′-dichloro-4′-sulfooxy-biphenyl in the rat. Environ Sci Technol 49:8087–8095

    Article  CAS  Google Scholar 

  • Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW (2015b) Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 45:245–272

    Article  CAS  Google Scholar 

  • Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW (2015c) Modulating inhibitors of transthyretin fibrillogenesis via sulfation: polychlorinated biphenyl sulfates as models. Chem Biol Interact 228:1–8

  • Grimm FA, Lehmler HJ, Koh WX, DeWall J, Teesch LM, Hornbuckle KC, Thorne PS, Robertson LW, Duffel MW (2017) Identification of a sulfate metabolite of PCB 11 in human serum. Environ Int 98:120–128

    Article  CAS  Google Scholar 

  • Gutleb AC, Cenijn P, Velzen M, Lie E, Ropstad E, Skaare JU, Malmberg T, Bergman A, Gabrielsen GW, Legler J (2010) In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus). Environ Sci Technol 44:3149–3154

    Article  CAS  Google Scholar 

  • Haglund P (1996a) Enantioselective separation of polychlorinated biphenyl atropisomers using chiral high-performance liquid chromatography. J Chromatogr A 724:219–228

    Article  CAS  Google Scholar 

  • Haglund P (1996b) Isolation and characterisation of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 32:2133–2140

    Article  CAS  Google Scholar 

  • Hamers T, Kamstra JH, Cenijn PH, Pencikova K, Palkova L, Simeckova P, Vondracek J, Andersson PL, Stenberg M, Machala M (2011) In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicol Sci 121:88–100

    Article  CAS  Google Scholar 

  • Heindel JJ et al (2015) Parma consensus statement on metabolic disruptors. Environ Health 14:1–7

    Article  CAS  Google Scholar 

  • Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44:2822–2827

    Article  CAS  Google Scholar 

  • Hu D, Martinez A, Hornbuckle KC (2008) Discovery of non-aroclor PCB (3,3′-dichlorobiphenyl) in Chicago air. Environ Sci Technol 42:7873–7877

    Article  CAS  Google Scholar 

  • Hu D, Lehmler HJ, Martinez A, Wang K, Hornbuckle KC (2010) Atmospheric PCB congeners across Chicago. Atmos Environ 44:1550–1557

    Article  CAS  Google Scholar 

  • Hu X, Adamcakova-Dodd A, Thorne PS (2014) The fate of inhaled (14)C-labeled PCB11 and its metabolites in vivo. Environ Int 63:92–100

    Article  CAS  Google Scholar 

  • van den Hurk P, Kubiczak GA, Lehmler HJ, James MO (2002) Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene. Environ Health Perspect 110:343–348

    Article  Google Scholar 

  • IARC (2013): Polychlorinated biphenyls and polybrominated biphenyls. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, 107. IARC, Lyon

  • Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 335:783–789

    Article  CAS  Google Scholar 

  • James MO, Ambadapadi S (2013) Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab Rev 45:401–414

    Article  CAS  Google Scholar 

  • James MO, Kleinow KM, Zhang Y, Zheng R, Wang L, Faux LR (2004) Increased toxicity of benzo(a)pyrene-7,8-dihydrodiol in the presence of polychlorobiphenylols. Mar Environ Res 58:343–346

    Article  CAS  Google Scholar 

  • Janssen EM, Thompson JK, Luoma SN, Luthy RG (2011) PCB-induced changes of a benthic community and expected ecosystem recovery following in situ sorbent amendment. Environ Toxicol Chem 30:1819–1826

  • Kamata R, Shiraishi F, Nakajima D, Takigami H, Shiraishi H (2009) Mono-hydroxylated polychlorinated biphenyls are potent aryl hydrocarbon receptor ligands in recombinant yeast cells. Toxicol in vitro 23:736–743

  • Kamata R, Shiraishi F, Kageyama S, Nakajima D (2015) Detection and measurement of the agonistic activities of PCBs and mono-hydroxylated PCBs to the constitutive androstane receptor using a recombinant yeast assay. Toxicol in vitro 29:1859–1867

  • Kania-Korwel I, Lehmler HJ (2013) Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. J Chromatogr A 1278:133–144

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Lehmler HJ (2016a) Toxicokinetics of chiral polychlorinated biphenyls across different species--a review. Environ Sci Pollut Res Int 23:2058–2080

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Lehmler HJ (2016b) Chiral polychlorinated biphenyls: absorption, metabolism and excretion--a review. Environ Sci Pollut Res Int 23:2042–2057

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Shaikh N, Hornbuckle KC, Robertson LW, Lehmler H-J (2007) Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality 19:56–66

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Hornbuckle KC, Robertson LW, Lehmler HJ (2008a) Influence of dietary fat on the enantioselective disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in female mice. Food Chem Toxicol 46:637–644

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Hrycay EG, Bandiera S, Lehmler H-J (2008b) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) atropisomers interact enantioselectively with hepatic microsomal cytochrome P450 enzymes. Chem Res Toxicol 21:1295–1303

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Vyas SM, Song Y, Lehmler H-J (2008c) Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers. J Chromatogr A 1207:146–154

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Xie W, Hornbuckle KC, Robertson LW, Lehmler H-J (2008d) Enantiomeric enrichment of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in mice after induction of CYP enzymes. Arch Environ Contam Toxicol 55:510–517

    Article  CAS  Google Scholar 

  • Kania-Korwel I, El-Komy MHME, Veng-Pedersen P, Lehmler HJ (2010) Clearance of polychlorinated biphenyl atropisomers is enantioselective in female C57Bl/6 mice. Environ Sci Technol 44:2828–2835

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Duffel MW, Lehmler H-J (2011) Gas chromatographic analysis with chiral cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat liver microsomes. Environ Sci Technol 45:9590–9596

  • Kania-Korwel I, Barnhart CD, Stamou M, Truong KM, El-Komy MH, Lein PJ, Veng-Pedersen P, Lehmler H-J (2012) 2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) and its hydroxylated metabolites are enantiomerically enriched in female mice. Environ Sci Technol 46:11393–11401

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Barnhart CD, Lein PJ, Lehmler H-J (2015) Effect of pregnancy on the disposition of 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) atropisomers and their hydroxylated metabolites in female mice. Chem Res Toxicol 28:1774–1783

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Lukasiewicz T, Barnhart CD, Stamou M, Chung H, Kelly KM, Bandiera S, Lein PJ, Lehmler H-J (2017) Congener-specific disposition of chiral polychlorinated biphenyls in lactating mice and their offspring: implications for PCB developmental neurotoxicity. Toxicol Sci 158:101–115

  • Kawano M, Hasegawa J, Enomoto T, Onishi H, Nishio Y, Matsuda M, Wakimoto T (2005) Hydroxylated polychlorinated biphenyls (OH-PCBs): recent advances in wildlife contamination study. Environ Sci Int J Environ Physiol Toxicol 12:315–324

    CAS  Google Scholar 

  • Kester MH, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MW, Bergman A, Safe SH, Kuiper GG, Schuur AG, Brouwer A, Visser TJ (2000) Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology 141:1897–1900

    Article  CAS  Google Scholar 

  • Koh WX, Hornbuckle KC, Thorne PS (2015) Human serum from urban and rural adolescents and their mothers shows exposure to polychlorinated biphenyls not found in commercial mixtures. Environ Sci Technol 49:8105–8112

    Article  CAS  Google Scholar 

  • Lai IK, Chai Y, Simmons D, Watson WH, Tan R, Haschek WM, Wang K, Wang B, Ludewig G, Robertson LW (2011) Dietary selenium as a modulator of PCB 126-induced hepatotoxicity in male Sprague-Dawley rats. Toxicol Sci 124:202–214

    Article  CAS  Google Scholar 

  • Laird BD, Goncharov AB, Chan HM (2013) Body burden of metals and persistent organic pollutants among Inuit in the Canadian Arctic. Environ Int 59:33–40

    Article  CAS  Google Scholar 

  • Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact 88:7–21

    Article  CAS  Google Scholar 

  • Lans MC, Spiertz C, Brouwer A, Koeman JH (1994) Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur J Pharmacol 270:129–136

    CAS  Google Scholar 

  • Lauby-Secretan B, Loomis D, Baan R, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Grosse Y, Straif K (2016): Use of mechanistic data in the IARC evaluations of the carcinogenicity of polychlorinated biphenyls and related compounds. Environ Sci Pollut Res Int 23:2220–2229

  • Lehmann L, Esch HL, Kirby PA, Robertson LW, Ludewig G (2007) 4-monochlorobiphenyl (PCB3) induces mutations in the livers of transgenic Fisher 344 rats. Carcinogenesis 28:471–478

    Article  CAS  Google Scholar 

  • Lehmler H-J, Robertson LW (2001) Atropisomers of PCBs. In: Hansen L (ed) Robertson LW. Recent advances in the environmental toxicology and health effects of PCBs. University Press of Kentucky, Lexington, KY, pp 62–65

    Google Scholar 

  • Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PR (2005) Effects of PCB 84 enantiomers on [3H]-phorbol ester binding in rat cerebellar granule cells and 45Ca2+−uptake in rat cerebellum. Toxicol Lett 156:391–400

  • Lehmler HJ, Harrad SJ, Huhnerfuss H, Kania-Korwel I, Lee CM, Lu Z, Wong CS (2010) Chiral polychlorinated biphenyl transport, metabolism, and distribution: a review. Environ Sci Technol 44:2757–2766

    Article  CAS  Google Scholar 

  • Li X, Parkin SR, Lehmler HJ (2017) Absolute configuration of 2,2',3,3',6-pentachlorinatedbiphenyl (PCB 84) atropisomers. Environ Sci Pollut Res Int. doi:10.1007/s11356-017-9259-z

  • Liu Y, Apak TI, Lehmler HJ, Robertson LW, Duffel MW (2006) Hydroxylated polychlorinated biphenyls are substrates and inhibitors of human hydroxysteroid sulfotransferase SULT2A1. Chem Res Toxicol 19:1420–1425

    Article  CAS  Google Scholar 

  • Liu Y, Smart JT, Song Y, Lehmler HJ, Robertson LW, Duffel MW (2009) Structure-activity relationships for hydroxylated polychlorinated biphenyls as substrates and inhibitors of rat sulfotransferases and modification of these relationships by changes in thiol status. Drug Metab Dispos 37:1065–1072

  • Liu Y, Hu K, Jia H, Jin G, Glatt H, Jiang H (2017): Potent mutagenicity of some non-planar tri- and tetrachlorinated biphenyls in mammalian cells, human CYP2E1 being a major activating enzyme. Arch Toxicol 91:2663–2676

  • Londono M, Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N (2010) Hydroxylated PCB induces Ca2+ oscillations and alterations of membrane potential in cultured cortical cells. J Appl Toxicol 30:334–342

  • Lu Z, Kania-Korwel I, Lehmler HJ, Wong CS (2013) Stereoselective formation of mono- and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. Environ Sci Technol 12184-92

  • Ludewig G, Lehmann L, Esch H, Robertson LW (2008) Metabolic activation of PCBs to carcinogens in vivo—a review. Environ Toxicol Pharmacol 25:241–246

    Article  CAS  Google Scholar 

  • Ma C, Zhai G, Wu H, Kania-Korwel I, Lehmler HJ, Schnoor JL (2016) Identification of a novel hydroxylated metabolite of 2,2′,3,5′,6-pentachlorobiphenyl formed in whole poplar plants. Environ Sci Pollut Res Int 23:2089–2098

    Article  CAS  Google Scholar 

  • Machala M, Blaha L, Lehmler HJ, Pliskova M, Majkova Z, Kapplova P, Sovadinova I, Vondracek J, Malmberg T, Robertson LW (2004) Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem Res Toxicol 17:340–347

    Article  CAS  Google Scholar 

  • Marek RF, Thorne PS, Wang K, Dewall J, Hornbuckle KC (2013) PCBs and OH-PCBs in serum from children and mothers in urban and rural U.S. communities. Environ Sci Technol 47:3353–3361

    Article  CAS  Google Scholar 

  • Marek RF, Thorne PS, DeWall J, Hornbuckle KC (2014) Variability in PCB and OH-PCB serum levels in children and their mothers in urban and rural U.S. communities. Environ Sci Technol 48:13459–13467

    Article  CAS  Google Scholar 

  • Martinez JM, Stephens LC, Jones LA (2005) Long-term effects of neonatal exposure to hydroxylated polychlorinated biphenyls in the BALB/cCrgl mouse. Environ Health Perspect 113:1022–1026

    Article  CAS  Google Scholar 

  • Martinez A, Norstrom K, Wang K, Hornbuckle KC (2010a) Polychlorinated biphenyls in the surficial sediment of Indiana Harbor and Ship Canal, Lake Michigan. Environ Int 36:849–854

    Article  CAS  Google Scholar 

  • Martinez A, Wang K, Hornbuckle KC (2010b) Fate of PCB congeners in an industrial harbor of Lake Michigan. Environ Sci Technol 44:2803–2808

    Article  CAS  Google Scholar 

  • Martinez A, Hadnott BN, Awad AM, Herkert NJ, Tomsho K, Basra K, Scammell MK, Heiger-Bernays W, Hornbuckle KC (2017) Release of airborne polychlorinated biphenyls from New Bedford Harbor results in elevated concentrations in the surrounding air. Environ Sci Technol Lett 4:127–131

    Article  CAS  Google Scholar 

  • McLean MR, Bauer U, Amaro AR, Robertson LW (1996) Identification of catechol and hydroquinone metabolites of 4-monochlorobiphenyl. Chem Res Toxicol 9:158–164

    Article  CAS  Google Scholar 

  • Meisner LF, Roloff B, Sargent L, Pitot H (1992) Interactive cytogenetic effects on rat bone-marrow due to chronic ingestion of 2,5,2′,5′ and 3,4,3′,4′ PCBs. Mutat Res 283:179–183

    Article  CAS  Google Scholar 

  • Milanowski B, Lulek J, Lehmler H-J, Kania-Korwel I (2010) Assessment of disposition of chiral polychlorinated biphenyls in female mdr 1a/b knockout versus wild-type mice using multivariate analyses. Environ Int 36:884–892

  • Niu J, Long X, Shi S (2007) Quantitative structure-activity relationships for prediction of the toxicity of hydroxylated and quinoid PCB metabolites. J Mol Model 13:163–169

    Article  CAS  Google Scholar 

  • Park JS, Bergman A, Linderholm L, Athanasiadou M, Kocan A, Petrik J, Drobna B, Trnovec T, Charles MJ, Hertz-Picciotto I (2008) Placental transfer of polychlorinated biphenyls, their hydroxylated metabolites and pentachlorophenol in pregnant women from eastern Slovakia. Chemosphere 70:1676–1684

    Article  CAS  Google Scholar 

  • Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Czerwinski M, Parkinson O (2012) Biotransformation of xenobiotics, Casarett and Doull’s toxicology: the basic science of poisons, 8e. McGraw-Hill Education, New York, NY

    Google Scholar 

  • Pavuk M et al (2014) Predictors of serum polychlorinated biphenyl concentrations in Anniston residents. Sci Total Environ 496:624–634

    Article  CAS  Google Scholar 

  • Pereg D, Tampal N, Espandiari P, Robertson LW (2001) Distribution and macromolecular binding of benzo[a]pyrene and two polychlorinated biphenyl congeners in female mice. Chem Biol Interact 137:243–258

    Article  CAS  Google Scholar 

  • Persoon C, Peters TM, Kumar N, Hornbuckle KC (2010) Spatial distribution of airborne polychlorinated biphenyls in Cleveland, Ohio and Chicago, Illinois. Environ Sci Technol 44:2797–2802

    Article  CAS  Google Scholar 

  • Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W (2009) Enantiomeric specificity of (−)−2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 22:201–207

    Article  CAS  Google Scholar 

  • Pham-Tuan H, Larsson C, Hoffmann F, Bergman A, Froeba M, Huehnerfuss H (2005) Enantioselective semipreparative HPLC separation of PCB metabolites and their absolute structure elucidation using electronic and vibrational circular dichroism. Chirality 17:266–280

    Article  CAS  Google Scholar 

  • Ptak A, Ludewig G, Lehmler HJ, Wojtowicz AK, Robertson LW, Gregoraszczuk EL (2005): Comparison of the actions of 4-chlorobiphenyl and its hydroxylated metabolites on estradiol secretion by ovarian follicles in primary cells in culture. Reprod Toxicol 20:57–64

  • Püttmann M, Oesch F, Robertson L, Mannschreck A (1986) Characteristics of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 15:2061–20164

    Article  Google Scholar 

  • Püttmann M, Mannschreck A, Oesch F, Robertson L (1989) Chiral effects in the induction of drug-metabolizing enzymes using synthetic atropisomers of polychlorinated biphenyls (PCBs). Biochem Pharmacol 38:1345–1352

    Article  Google Scholar 

  • Püttmann M, Arand M, Oesch F, Mannschreck A, Robertson L (1990) Chirality and the induction of xenobiotic-metabolizing enzymes: effects of the atropisomers of the polychlorinated biphenyl 2,2′,3,4,4′,6-hexachlorobiphenyl. In: Frank H, Testa B (eds) Holmstedt B. Chirality and biological activity. Alan R. Liss Inc., New York, pp 177–184

    Google Scholar 

  • Qin X, Lehmler HJ, Teesch LM, Robertson LW, Duffel MW (2013) Chlorinated biphenyl quinones and phenyl-2,5-benzoquinone differentially modify the catalytic activity of human hydroxysteroid sulfotransferase hSULT2A1. Chem Res Toxicol 26:1474–1485

    Article  CAS  Google Scholar 

  • Quinete N, Schettgen T, Bertram J, Kraus T (2014) Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. Environ Sci Pollut Res Int 21:11951–11972

    Article  CAS  Google Scholar 

  • Robertson LW, Ludewig G (2011) Polychlorinated biphenyl (PCB) carcinogenicity with special emphasis on airborne PCBs. Gefahrst Reinhalt Luft 71:25–32

    CAS  Google Scholar 

  • Rodman LE, Shedlofsky SI, Mannschreck A, Puttmann M, Swim AT, Robertson LW (1991) Differential potency of atropisomers of polychlorinated biphenyls on cytochrome P450 induction and uroporphyrin accumulation in the chick embryo hepatocyte culture. Biochem Pharmacol 41:915–922

    Article  CAS  Google Scholar 

  • Rodriguez EA, Li X, Lehmler HJ, Robertson LW, Duffel MW (2016) Sulfation of lower chlorinated polychlorinated biphenyls increases their affinity for the major drug-binding sites of human serum albumin. Environ Sci Technol 50:5320–5327

    Article  CAS  Google Scholar 

  • Ruiz P, Faroon O, Moudgal CJ, Hansen H, De Rosa CT, Mumtaz M (2008) Prediction of the health effects of polychlorinated biphenyls (PCBs) and their metabolites using quantitative structure–activity relationship (QSAR). Toxicol Lett 181:53–65

    Article  CAS  Google Scholar 

  • Ruiz P, Myshkin E, Quigley P, Faroon O, Wheeler JS, Mumtaz MM, Brennan RJ (2013) Assessment of hydroxylated metabolites of polychlorinated biphenyls as potential xenoestrogens: a QSAR comparative analysis *. SAR QSAR Environ Res 24:393–416

    Article  CAS  Google Scholar 

  • Ruiz P, Ingale K, Wheeler JS, Mumtaz M (2016) 3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens. Chemosphere 144:2238–2246

    Article  CAS  Google Scholar 

  • Sacco JC, James MO (2005) Sulfonation of environmental chemicals and their metabolites in the polar bear (Ursus maritimus). Drug Metab 33:1341–1348

  • Sacco JC, Lehmler HJ, Robertson LW, Li W, James MO (2008) Glucuronidation of polychlorinated biphenylols and UDP-glucuronic acid concentrations in channel catfish liver and intestine. Drug Metab Dispos 36:623–630

  • Sargent L, Roloff B, Meisner L (1989) In vitro chromosome damage due to PCB interactions. Mutat Res 224:79–88

    Article  CAS  Google Scholar 

  • Sargent L, Dragan YP, Erickson C, Laufer CJ, Pitot HC (1991) Study of the separate and combined effects of the non-planar 2,5,2′,5′- and the planar 3,4,3′,4′-tetrachlorobiphenyl in liver and lymphocytes in vivo. Carcinogenesis 12:793–800

    Article  CAS  Google Scholar 

  • Schnellmann R, Putnam C, Sipes I (1983) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by human hepatic microsomes. Biochem Pharmacol 32:3233–3239

    Article  CAS  Google Scholar 

  • Schuur AG, Legger FF, van Meeteren ME, Moonen MJ, van Leeuwen-Bol I, Bergman A, Visser TJ, Brouwer A (1998) In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol 11:1075–1081

    Article  CAS  Google Scholar 

  • Schuur AG, Bergman A, Brouwer A, Visser TJ (1999) Effects of pentachlorophenol and hydroxylated polychlorinated biphenyls on thyroid hormone conjugation in a rat and a human hepatoma cell line. Toxicol in vitro 13:417–425

  • Sethi S, Keil KP, Chen H, Hayakawa K, Li X, Lin Y, Lehmler HJ, Puschner B, Lein PJ (2017): Detection of 3,3′-dichlorobiphenyl in human maternal plasma and its effects on axonal and dendritic growth in primary rat neurons. Toxicol Sci. doi:10.1093/toxsci/kfx100

  • Shanahan CE, Spak SN, Martinez A, Hornbuckle KC (2015) Inventory of PCBs in Chicago and opportunities for reduction in airborne emissions and human exposure. Environ Sci Technol 49:13878–13888

    Article  CAS  Google Scholar 

  • Shimada T, Kakimoto K, Takenaka S, Koga N, Uehara S, Murayama N, Yamazaki H, Kim D, Guengerich FP, Komori M (2016) Roles of human CYP2A6 and monkey CYP2A24 and 2A26 cytochrome P450 enzymes in the oxidation of 2,5,2′,5′-tetrachlorobiphenyl. Drug Metab Dispos 44:1899–1909

    Article  CAS  Google Scholar 

  • Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N (2006) Low dose hydroxylated PCB induces c-Jun expression in PC12 cells. Neurotoxicology 27:176–183

    Article  CAS  Google Scholar 

  • Silberhorn EM, Glauert HP, Robertson LW (1990) Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs. Crit Rev Toxicol 20:440–496

    Article  CAS  Google Scholar 

  • Stamou M, Wu X, Kania-Korwel I, Lehmler HJ, Lein PJ (2014) Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences. Drug Metab Dispos 42:239–244

  • Stenberg M, Hamers T, Machala M, Fonnum F, Stenius U, Lauy AA, van Duursen MB, Westerink RH, Fernandes EC, Andersson PL (2011) Multivariate toxicity profiles and QSAR modeling of non-dioxin-like PCBs—an investigation of in vitro screening data from ultra-pure congeners. Chemosphere 85:1423–1429

    Article  CAS  Google Scholar 

  • Stowell CL, Barvian KK, Young Peter CM, Bigsby RM, Verdugo Dawn E, Bertozzi CR, Widlanski TS (2006) A role for sulfation-desulfation in the uptake of bisphenol A into breast tumor cells. Chem Biol 13:891–897

    Article  CAS  Google Scholar 

  • Tampal N, Lehmler HJ, Espandiari P, Malmberg T, Robertson LW (2002) Glucuronidation of hydroxylated polychlorinated biphenyls (PCBs). Chem Res Toxicol 15:1259–1266

    Article  CAS  Google Scholar 

  • Thayer KA, Heindel JJ, Bucher JR, Gallo MA (2012) Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 120:779–789

    Article  CAS  Google Scholar 

  • Thelen K, Dressman JB (2009) Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol 61:541–558

    Article  CAS  Google Scholar 

  • Toda M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Inoue Y, Mori T (2012) Absolute configuration of atropisomeric polychlorinated biphenyl 183 enantiomerically enriched in human samples. J Phys Chem A 116:9340–9346

    Article  CAS  Google Scholar 

  • Tue NM, Takahashi S, Subramanian A, Sakai S, Tanabe S (2013) Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environ Sci Process Impacts 15:1326–1331

    Article  CAS  Google Scholar 

  • Uwimana E, Li X, Lehmler H-J (2016) 2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) is atropselectively metabolized to para-hydroxylated metabolites by human liver microsomes. Chem Res Toxicol 29:2108–2110

    Article  CAS  Google Scholar 

  • Uwimana E, Maiers A, Li X, Lehmler HJ (2017) Microsomal metabolism of prochiral polychlorinated biphenyls results in the enantioselective formation of chiral metabolites. Environ Sci Technol 51:1820–1829

    Article  CAS  Google Scholar 

  • Vickers AEM, Sipes G, Brendel K (1986) Metabolism-related spectral characterization and subcellular distribution of polychlorinated biphenyl congeners in isolated rat hepatocytes. Biochem Pharmacol 35:297–306

    Article  CAS  Google Scholar 

  • Vondracek J, Machala M, Bryja V, Chramostova K, Krcmar P, Dietrich C, Hampl A, Kozubik A (2005) Aryl hydrocarbon receptor-activating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells. Toxicol Sci 83:53–63

    Article  CAS  Google Scholar 

  • Waller SC, He YA, Harlow GR, He YQ, Mash EA, Halpert JR (1999) 2,2′,3,3′,6,6′-hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol 12:690–699

  • Wang LQ, Lehmler HJ, Robertson LW, James MO (2006) Polychlorobiphenylols are selective inhibitors of human phenol sulfotransferase 1A1 with 4-nitrophenol as a substrate. Chem Biol Interact 159:235–246

    Article  CAS  Google Scholar 

  • Wang H, Wei L, Wu Y, Jia H, Jiang H, Liu Y (2017) Induction of micronuclei and cell cycle arrest by some tri- and tetrachlorobiphenyls in mammalian cells deficient in xenobiotic-metabolizing enzymes. Environ Mol Mutagen 58:199–208

    Article  CAS  Google Scholar 

  • Wangpradit O, Teesch LM, Mariappan SV, Duffel MW, Norstrom K, Robertson LW, Luthe G (2009) Oxidation of 4-chlorobiphenyl metabolites to electrophilic species by prostaglandin H synthase. Chem Res Toxicol 22:64–71

    Article  CAS  Google Scholar 

  • Warner NA, Martin JW, Wong CS (2009) Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites. Environ Sci Technol 43:114–121

    Article  CAS  Google Scholar 

  • Wu X, Pramanik A, Duffel MW, Hrycay EG, Bandiera SM, Lehmler H-J, Kania-Korwel I (2011) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. Chem Res Toxicol 24:2249–2257

  • Wu X, Duffel M, Lehmler H-J (2013a) Oxidation of polychlorinated biphenyls by liver tissue slices from phenobarbital-preatreated mice is congener-specific and atropselective. Chem Res Toxicol 26:1642–1651

    Article  CAS  Google Scholar 

  • Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler H-J (2013b) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 43:933–947

  • Wu X, Kammerer A, Lehmler H-J (2014) Microsomal oxidation of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) results in species-dependent chiral signatures of the hydroxylated metabolites. Environ Sci Technol 48:2436–2444

    Article  CAS  Google Scholar 

  • Wu X, Barnhart C, Lein PJ, Lehmler HJ (2015) Hepatic metabolism affects the atropselective disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in mice. Environ Sci Technol 49:616–625

    Article  CAS  Google Scholar 

  • Wyndham C, Safe S (1978) In vitro metabolism of 4-chlorobiphenyl by control and induced rat liver microsomes. Biochemistry 17:208–215

    Article  CAS  Google Scholar 

  • Xie W, Wang K, Robertson LW, Ludewig G (2010) Investigation of mechanism(s) of DNA damage induced by 4-monochlorobiphenyl (PCB3) metabolites. Environ Int 36:950–961

    Article  CAS  Google Scholar 

  • Yang D, Kania-Korwel I, Ghogha A, Chen H, Stamou M, Bose DD, Pessah IN, Lehmler HJ, Lein PJ (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379–392

    Article  CAS  Google Scholar 

  • Zettner MA, Flor S, Ludewig G, Wagner J, Robertson LW, Lehmann L (2007) Quinoid metabolites of 4-monochlorobiphenyl induce gene mutations in cultured Chinese hamster v79 cells. Toxicol Sci 100:88–98

    Article  CAS  Google Scholar 

  • Zhai G, Lehmler HJ, Schnoor JL (2010a) Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants. Environ Sci Technol 44:3901–3907

    Article  CAS  Google Scholar 

  • Zhai G, Lehmler HJ, Schnoor JL (2010b) Identification of hydroxylated metabolites of 3,3′,4,4′-tetrachlorobiphenyl and metabolic pathway in whole poplar plants. Chemosphere 81:523–528

    Article  CAS  Google Scholar 

  • Zhai G, Hu D, Lehmler H-J, Schnoor JL (2011a) Enantioselective biotransformation of chiral PCBs in whole poplar plants. Environ Sci Technol 45:2308–2316

    Article  CAS  Google Scholar 

  • Zhai G, Lehmler HJ, Schnoor JL (2011b) New hydroxylated metabolites of 4-monochlorobiphenyl in whole poplar plants. Chem Cent J 5:87

    Article  CAS  Google Scholar 

  • Zhai G, Lehmler HJ, Schnoor JL (2013a) Inhibition of cytochromes P450 and the hydroxylation of 4-monochlorobiphenyl in whole poplar. Environ Sci Technol 47:6829–6835

    Article  CAS  Google Scholar 

  • Zhai G, Wu X, Lehmler HJ, Schnoor JL (2013b) Atropisomeric determination of chiral hydroxylated metabolites of polychlorinated biphenyls using HPLC-MS. Chem Cent J 7:183

    Article  CAS  Google Scholar 

  • Zhang C, Lai Y, Jin G, Glatt H, Wei Q, Liu Y (2016) Human CYP2E1-dependent mutagenicity of mono- and dichlorobiphenyls in Chinese hamster (V79)-derived cells. Chemosphere 144:1908–1915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by a grant from the National Institute of Environmental Health Sciences (P42 ES013661). K.D. and G.S.G. recognize the Training Core of the Iowa Superfund Research Center for training and financial support. Opinions are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry W. Robertson.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakal, K., Gadupudi, G.S., Lehmler, HJ. et al. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ Sci Pollut Res 25, 16277–16290 (2018). https://doi.org/10.1007/s11356-017-9694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9694-x

Keywords

Navigation