Skip to main content

Advertisement

Log in

Fourteen years of anthropization dynamics in the Uapaca bojeri Baill. forest of Madagascar

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Anthropization of forest landscapes is a major threat to ecosystems and biodiversity. To gather comprehensive information on anthropization dynamics in forest landscapes, fine-scale surveys of deforestation are required, coupled with detailed analysis of both spatial transformation processes and forest patch geometry. We conducted such a comprehensive study in a monospecific Uapaca bojeri (Baill.) forest of Madagascar, between 1999 and 2013. A diachronic set of four maps was produced and deforestation rates were calculated. Spatial transformation processes were described using Bogaert et al. (2004) typology. Forest patch geometry was monitored using largest patch index, mean patch size, and squared mean patch size to describe patch size dynamics, mean shape index and area weighted mean shape index to describe patch compactness, and fractal dimension analysis to describe patch outline complexity. For fractal dimension analysis, an innovative segmented regression model (Muggeo 2008) was used to separately quantify fractal dimensions for multiple ranges of patch sizes. Our results showed a growing anthropization of the U. bojeri forest landscape in the area, through a strong yet decelerating deforestation (from − 59.5% year−1 between 1999 and 2005 to − 2.84% year−1 between 2009 and 2013), clear forest fragmentation, and a subtle yet growing-in-scale simplification of patch geometry for small forest patches. Deforestation was artisanal in nature and, in 2013, large patches were withdrawing to less accessible topographic features. Our results forecast a medium-term loss of resilience of the U. bojeri forest in the area, if no direct forest conservation measures are taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Maps produced with QGIS (QGIS Development Team 2015a)

Fig. 2

Maps produced with QGIS (QGIS Development Team 2015a)

Fig. 3

Maps produced with QGIS (QGIS Development Team 2015a), graph produced with R (R Development Core Team 2015b)

Similar content being viewed by others

References

  • Achard F, Beuchle R, Mayaux P et al (2014) Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Chang Biol 20:2540–2554. https://doi.org/10.1111/gcb.12605

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal DK, Silander JA, Gelfand AE et al (2005) Tropical deforestation in Madagascar: analysis using hierarchical, spatially explicit, Bayesian regression models. Ecol Modell 185:105–131. https://doi.org/10.1016/j.ecolmodel.2004.11.023

    Article  Google Scholar 

  • August P, Iverson L, Nugranad J (2002) Human conversion of terrestrial habitats. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York, pp 198–224

    Chapter  Google Scholar 

  • Bamba I, Sadaiou Y, Barima S, Bogaert J (2010) Influence de la densité de la population sur la structure spatiale d’un paysage forestier dans le bassin du Congo en R. D Congo. Trop Conserv Sci 3:31–44

    Article  Google Scholar 

  • Barsics F, Razafimanantsoa TM, Minet J et al (2013) Nocturnal moth inventory in Malagasy tapia woods, with focus on silk-producing species. In: Verheggen FJ, Bogaert J, Haubruge É (eds) Les vers à soie malgache, enjeux écologiques et socio-économiques. Les Presses Agronomiques de Gembloux, Gembloux, pp 77–89

    Google Scholar 

  • Bogaert J, Ceulemans R, Salvador-Van Eysenrode D (2004) Decision tree algorithm for detection of spatial processes in landscape transformation. Environ Manage 33:62–73. https://doi.org/10.1007/s00267-003-0027-0

    Article  PubMed  Google Scholar 

  • Bogaert J, Barima YSS, Ji J et al (2011) A methodological framework to quantify anthropogenic effects on landscape patterns. In: Hong S-K, Kim J-E, Wu J, Nakagoshi N (eds) Landscape ecology in Asian cultures. Springer, Heidelberg, pp 271–272

    Google Scholar 

  • Bogaert J, Vranken I, André M (2014) Anthropogenic effects in landscapes: historical context and spatial pattern. In: Hong S, Bogaert J, Min Q (eds) Biocultural landscapes, 1st edn. Springer, Netherlands, pp 89–112

    Google Scholar 

  • Bollback JP (2006) SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinform 7:88

    Article  Google Scholar 

  • Bridgewater PB, Arico S (2002) Conserving and managing biodiversity sustainably: the roles of science and society. Nat Resour Forum 26:245–248. https://doi.org/10.1111/0165-0203.00025

    Article  Google Scholar 

  • Coulon JG, Lebailly P, Haubruge E, Verheggen FJ (2013) La filière de la soie sauvage à Madagascar: approche socio-économique appliquée à la région d’Arivonimamo. In: Verheggen FJ, Bogaert J, Haubruge É (eds) Les vers à soie malgache, enjeux écologiques et socio-économiques. Les presses Agronomique de Gembloux, Gembloux, pp 297–305

    Google Scholar 

  • Danielson J, Gesch D (2011) Global multi-resolution terrain elevation data 2010(GMTED2010). US Geol Surv Open-File Rep 2011–1073(2010):26

    Google Scholar 

  • Davies RB (1987) Hypothesis testing when a nuisance parameter is unidentified under the alternative. Biometrika 74:33–43

    Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447. https://doi.org/10.1890/070062

    Article  Google Scholar 

  • Ferretti-Gallon K, Busch J (2014) What drives deforestation and what stops it? A meta-analysis of spatially explicit econometric studies. Center for Global Development, Washington, p 44

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2011) State of the world’s forests 2011. Rome. ISBN 978-92-5-106750-5

  • Food and Agriculture Organization of the United Nations (FAO) (2014) State of the world’s forests 2014. Enhancing the socioeconomic benefits from forests. Rome. ISBN 978-92-5-108269-0

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

  • Forman RTT (1995) Some general principles of landscape and regional ecology. Landsc Ecol 10:133–142. https://doi.org/10.1007/BF00133027

    Article  Google Scholar 

  • Gade DW (1985) Savanna woodland, fire, protein and silk in highland Madagascar. J Ethnobiol 5:109–122

    Google Scholar 

  • Getahun K, Van Rompaey A, Van Turnhout P, Poesen J (2013) Factors controlling patterns of deforestation in moist evergreen Afromontane forests of Southwest Ethiopia. For Ecol Manage 304:171–181. https://doi.org/10.1016/j.foreco.2013.05.001

    Article  Google Scholar 

  • Green GM, Sussman RW (1990) Deforestation history of the eastern rain forests of Madagascar from satellite images. Science 248:212–215. https://doi.org/10.1126/science.248.4952.212

    Article  CAS  PubMed  Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS et al (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271. https://doi.org/10.1111/j.1461-0248.2004.00568.x

    Article  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235. https://doi.org/10.1126/science.1210657

    Article  CAS  PubMed  Google Scholar 

  • Hutton J, Adams WM, Murombedzi JC (2005) Back to the Barriers? Changing narratives in biodiversity conservation. Forum Dev Stud 32:341–370. https://doi.org/10.1080/08039410.2005.9666319

    Article  Google Scholar 

  • Imre AR, Bogaert J (2004) The fractal dimension as a measure of the quality of habitats. Acta Biotheor 52:41–56

    Article  CAS  PubMed  Google Scholar 

  • Keller E (2008) The banana plant and the moon: conservation and the Malagasy ethos of life in Masoala, Madagascar. Am Ethnol 35:650–664. https://doi.org/10.1111/j.1548-1425.2008.00103.x

    Article  Google Scholar 

  • Klein J (2002) Deforestation in the Madagascar highlands – established “truth” and scientific uncertainty. GeoJournal 56:191–199

    Article  Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G et al (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Article  Google Scholar 

  • Kull CA (2004) Isle of fire: the political ecology of landscape burning in Madagascar. University of Chicago, Chicago

    Google Scholar 

  • Kull CA, Ratsirarson J, Randriamboavonjy G (2005) Les forêts de tapia des Hautes Terres malgaches. Terre Malgache 24:22–58

    Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the Anthropocene. Nature 519:171–180. https://doi.org/10.1038/nature14258

    Article  CAS  PubMed  Google Scholar 

  • Malhi Y, Gardner TA, Goldsmith GR et al (2014) Tropical forests in the Anthropocene. Annu Rev Environ Resour 39:125–159. https://doi.org/10.1146/annurev-environ-030713-155141

    Article  Google Scholar 

  • Mayaux P, Bartholomé E, Massart M et al (2003) A land cover map of Africa. Carte de l’occupation du sol de l’Afrique, Luxembourg. ISBN 92-894-5370-2

  • McConnell WJ (2002) Madagascar: emerald Isle or paradise lost? Environ Sci Policy Sustain Dev 44:10–22. https://doi.org/10.1080/00139157.2002.10544685

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. https://doi.org/10.2737/PNW-GTR-351

  • Meltzer MI, Hastings HM (1992) The use of fractals to assess the ecological impact of increased cattle population: case study from the Runde Communal Land, Zimbabwe. J Appl Ecol 29:635–646. https://doi.org/10.2307/2404471

    Article  Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW et al (2011) Biodiversity hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nagendra H, Southworth J, Tucker C (2003) Accessibility as a determinant of landscape transformation in western Honduras: linking pattern and process. Landsc Ecol 18:141–158. https://doi.org/10.1023/A:1024430026953

    Article  Google Scholar 

  • O’Neill RV, Riitters KH, Wickham JD, Jones KB (1999) Landscape pattern metrics and regional assessment. Ecosyst Heal 5:225–233. https://doi.org/10.1046/j.1526-0992.1999.09942.x

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Article  Google Scholar 

  • Pollini J, Hockley N, Muttenzer FD, Ramamonjisoa BS (2014) The transfer of natural resource management rights to local communities. In: Scales IR (ed) Conservation and environmental management in Madagascar. Routledge, Abingdon, p 172–192

  • Rajoelison LG, Rakoto Ratsimba H, Rakotomalala L et al (2009) Inventaire de biomasse dans les forêts de tapia, régions Itasy (Miarinarivo) et Amoron’i mania (Ambatofinandrahana), Rapport Final, Madagascar

  • Rakotondrasoa OL (2012) Ecologie spatiale et dynamique de la foret de tapia, Uapaca bojeri Baill. (1958), habitat du ver à soie Borocera cajani (Vinson, 1863), dans la zone d’Arivonimamo II. Université d’Antananarivo, Arivonimamo

    Google Scholar 

  • Rakotondrasoa O, Malaisse F, Rajoelison GL et al (2012) La forêt de tapia, écosystème endémique de Madagascar: écologie, fonctions, causes de dégradation et de transformation (synthèse bibliographique). Biotechnol Agron Soc Environ 16:541–552

    Google Scholar 

  • Rakotondrasoa O, Ayral A, Stein J et al (2013a) Analyse des facteurs anthropiques de dégradation du bois de tapia (Uapaca bojeri) d’Arivonimamo. In: Verheggen FJ, Bogaert J, Haubruge É (eds) Les vers à soie malgache, enjeux écologiques et socio-économiques, 1st edn. Les Presses Agronomiques de Gembloux, Gembloux, pp 151–162

    Google Scholar 

  • Rakotondrasoa OL, Malaisse F, Rajoelison GL et al (2013b) Identification des indicateurs de dégradation de la forêt de tapia (Uapaca bojeri) par une analyse sylvicole. Tropicultura 31:10–19

    Google Scholar 

  • Rakotondrasoa OL, Stein J, Ayral A et al (2013c) Influence des reboisements d’eucalyptus (Eucalyptus robusta) et de pin (Pinus kesiya) sur la régénération naturelle de tapia (Uapaca bojeri) en forêt d’Arivonimamo. In: Verheggen FJ, Bogaert J, Haubruge É (eds) Les vers à soie malgache, enjeux écologiques et socio-économiques. Les Presses Agronomiques de Gembloux, Gembloux, pp 177–188

    Google Scholar 

  • Rasolofoson RA, Ferraro PJ, Jenkins CN, Jones JPG (2015) Effectiveness of community forest management at reducing deforestation in Madagascar. Biol Conserv 184:271–277. https://doi.org/10.1016/j.biocon.2015.01.027

    Article  Google Scholar 

  • Ratsimbarison HB, Ramanarivosoa T (2006) Transfert de la gestion des ressources naturelles renouvelables aux communautés locales: cas de la gelose dans la forêt de Tapia (Uapaca bojerii), Arivonimamo, Madagascar

  • Razafimanantsoa TM, Raminosoa N, Rakotondrasoa OL et al (2013) Silkworm moths inventory in their natural tapia forest habitat (Madagascar): diversity, population dynamics and host plants. Afr Entomol 21:137–150. https://doi.org/10.4001/003.021.0123

    Article  Google Scholar 

  • Saura S, Martinez-Millan J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67:1027–1036

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. https://doi.org/10.1038/35098000

    Article  CAS  PubMed  Google Scholar 

  • QGIS Development Team (2015) QGIS Geographic Information System. Open Source Geospatial Found. Proj

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Tropek R, Sedláček O, Beck J et al (2014) Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344:981. https://doi.org/10.1126/science.1248753

    Article  CAS  PubMed  Google Scholar 

  • Urban DL, Wallin DO (2002) Introduction to Markov models. In: Gergel SE, Turner MG (eds) Learning landscape ecology, 1st edn. Springer, New York, pp 35–47

    Chapter  Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH (1987) A hierarchical perspective can help scientist understand spatial patterns. Bioscience 37:119–127

    Article  Google Scholar 

  • Urech ZL, Zaehringer GJ, Rickenbach O et al (2015) Understanding deforestation and forest fragmentation from a livelihood perspective. Madagascar Conserv Dev 10:67–76

    Article  Google Scholar 

  • Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318. https://doi.org/10.1111/1365-2664.12190

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Vranken I (2015) Quantifying landscape anthropisation patterns concepts, methods and limits. Université Libre de Bruxelles, Brussels

    Google Scholar 

  • Waeber PO, Wilmé L, Mercier J-R et al (2016) How effective have 30 years of internationally driven conservation and development efforts been in Madagascar? PLoS One 11:e0161115. https://doi.org/10.1371/journal.pone.0161115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the GeVaBo project and its funding body, the Belgian University Commission for Development (CUD). The experiments used in this paper comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thalès de Haulleville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Haulleville, T., Rakotondrasoa, O.L., Rakoto Ratsimba, H. et al. Fourteen years of anthropization dynamics in the Uapaca bojeri Baill. forest of Madagascar. Landscape Ecol Eng 14, 135–146 (2018). https://doi.org/10.1007/s11355-017-0340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-017-0340-z

Keywords

Navigation