Skip to main content
Log in

The effect of sleep duration on exhaled nitric oxide levels in U.S. adults

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Poor sleep quality and duration are associated with systemic endothelial dysfunction. However, an association between poor sleep and pulmonary endothelial dysfunction has not been elucidated. We sought to determine if there is a relationship between sleep duration and fractional exhaled nitric oxide (FeNO) concentrations as a surrogate for pulmonary endothelial function.

Methods

We used three National Health and Nutrition Examination Survey (NHANES) cycles (2007–2012). Linear regression models were built with and without adjustment for age, sex, race, BMI, asthma/bronchitis, CRP, smoking, folate, renal function, respiratory infections, and steroid use. To examine a non-linear relationship, we introduced a spline, with single knot at mean sleep duration (7 h).

Results

Of 13,173 participants (50.8% male, 44.2% Caucasian), 78% slept 6–8 hours (h). FeNO was significantly higher in the group sleeping 6–8 h (17.3 ± 14.9 ppb) than in the other two groups (16.0 ± 13.0 ppb, 15.9 ± 12.7 ppb for <6 and >8 h respectively; P < 0.001). In unadjusted linear regression, FeNO increased by 1.1 ppb for each hour increase in sleep up to 7 h (P < 0.001). Increased sleep duration beyond 7 h saw a 0.96 ppb decrease in FeNO (P < 0.001). After adjustment for confounders, FeNO increased by 1.09 ppb for each hour of sleep up to 7 h (P = 0.001) and decreased by 0.71 ppb for each hour after (P = 0.02).

Conclusion

Sleeping less or more than 7 h is associated with pulmonary endothelial dysfunction as measured by FeNO. Further study is needed to evaluate mechanism(s) of this association and validity of FeNO as a marker of endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benito-Leon J et al (2015) Author response. Neurology 85(4):388. doi:10.1212/WNL.0000000000001778

    PubMed  Google Scholar 

  2. Zhong G et al (2015) Daytime napping and mortality from all causes, cardiovascular disease, and cancer: a meta-analysis of prospective cohort studies. Sleep Med 16(7):811–819. doi:10.1016/j.sleep.2015.01.025

    Article  PubMed  Google Scholar 

  3. Badran M et al (2015) Epidemiology of sleep disturbances and cardiovascular consequences. Can J Cardiol 31(7):873–879. doi:10.1016/j.cjca.2015.03.011

    Article  PubMed  Google Scholar 

  4. Watson NF et al (2015) Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. J Clin Sleep Med: JCSM: Off Publ Am Acad Sleep Med 11(6):591–592. doi:10.5664/jcsm.4758

  5. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  PubMed  Google Scholar 

  6. Calvin AD et al (2014) Experimental sleep restriction causes endothelial dysfunction in healthy humans. J am Heart Assoc 3(6):e001143. doi:10.1161/JAHA.114.001143

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weil BR et al (2013) Self-reported habitual short sleep duration is associated with endothelial fibrinolytic dysfunction in men: a preliminary report. Sleep 36(2):183–188. doi:10.5665/sleep.2368

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maricic L et al (2013) Assessment of endothelial dysfunction by measuring von Willebrand factor and exhaled nitric oxide in patients with chronic obstructive pulmonary disease. Coll Antropol 37(4):1153–1160

    PubMed  Google Scholar 

  9. Lauer S et al (2009) Thoracic epidural anesthesia time-dependently modulates pulmonary endothelial dysfunction in septic rats. Crit Care 13(4):R109. doi:10.1186/cc7950

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yeo TW et al (2007) Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 204(11):2693–2704. doi:10.1084/jem.20070819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. http://www.cdc.gov/nchs/nhanes.htm. Accessed 6 Jan 2016

  12. Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  13. Centers for Disease Control and Precention (2014) Laboratory procedure manual: total folate, serum/whole blood, by microbiologic assay. Washington, DC

    Google Scholar 

  14. Lumley T (2004) Analysis of complex survey samples. J Stat Softw 9(1):1–19

    Google Scholar 

  15. Cappuccio FP et al (2011) Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 32(12):1484–1492. doi:10.1093/eurheartj/ehr007

    Article  PubMed  Google Scholar 

  16. Cappuccio FP et al (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33(5):585–592

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gallicchio L, Kalesan B (2009) Sleep duration and mortality: a systematic review and meta-analysis. J Sleep Res 18(2):148–158. doi:10.1111/j.1365-2869.2008.00732.x

    Article  PubMed  Google Scholar 

  18. Ikehara S et al (2009) Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep 32(3):295–301

    Article  PubMed  PubMed Central  Google Scholar 

  19. Redline S et al (2010) Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 182(2):269–277. doi:10.1164/rccm.200911-1746OC

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wolff B et al (2008) Relation of self-reported sleep duration with carotid intima-media thickness in a general population sample. Atherosclerosis 196(2):727–732. doi:10.1016/j.atherosclerosis.2006.12.023

    Article  CAS  PubMed  Google Scholar 

  21. Gottlieb DJ et al (2006) Association of usual sleep duration with hypertension: the sleep heart health study. Sleep 29(8):1009–1014

    Article  PubMed  Google Scholar 

  22. Gangwisch JE et al (2006) Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination survey. Hypertension 47(5):833–839. doi:10.1161/01.HYP.0000217362.34748.e0

    Article  CAS  PubMed  Google Scholar 

  23. Nagai M et al (2013) Sleep duration and insomnia in the elderly: associations with blood pressure variability and carotid artery remodeling. Am J Hypertens 26(8):981–989. doi:10.1093/ajh/hpt070

    Article  PubMed  Google Scholar 

  24. Buxton OM, Marcelli E (2010) Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med 71(5):1027–1036. doi:10.1016/j.socscimed.2010.05.041

    Article  PubMed  Google Scholar 

  25. Xu Y et al (2014) Non-invasive endothelial function testing and the risk of adverse outcomes: a systematic review and meta-analysis. Eur Heart J Cardiovas Imaging 15(7):736–746. doi:10.1093/ehjci/jet256

    Article  Google Scholar 

  26. Behl M et al (2014) Vascular endothelial function and self-reported sleep. Am J Med Sci 347(6):425–428. doi:10.1097/MAJ.0b013e31829bc950

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oberg C et al. (2014) Effects of sleep deprivation on exhaled nitric oxide concentrations in medical residents taking night call. Sleep Disord: Treat Care 3 (4). doi:10.4172/2325-9639.1000145

  28. Sauvet F et al (2014) Total sleep deprivation alters endothelial function in rats: a nonsympathetic mechanism. Sleep 37(3):465–473. doi:10.5665/sleep.3476

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greene RW (2013) Role for neuronal nitric oxide synthase in sleep homeostasis and arousal. Proc Natl Acad Sci U S A 110(50):19982–19983. doi:10.1073/pnas.1319863110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jensen H. Hyde.

Ethics declarations

Funding

No funding was received for this research.

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. There is no identifying information included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyde, J.H., Qayyum, R. The effect of sleep duration on exhaled nitric oxide levels in U.S. adults. Sleep Breath 21, 809–813 (2017). https://doi.org/10.1007/s11325-017-1520-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-017-1520-7

Keywords

Navigation