Skip to main content
Log in

Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The rhizobacterial tomato pathogen Pseudomonas syringae pv. tomato str. DC3000 (PstDC3000), like many plant pathogenic bacteria, can elicit hypersensitive response in non-host plant cells. PstDC3000 uses a type III protein secretion system (T3SS) to deliver effector proteins.

Objectives

We compared metabolomic responses of Arabidopsis suspension cells to a wild-type PstDC3000, a T3SS deletion mutant PstDC3000D28E, and a pathogen associated molecular pattern (PAMP) flagellin’s N-terminal domain’s 22-aa peptide (flg22) to obtain metabolomics insights into the plant cell PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI).

Methods

Using targeted HPLC-MRM-MS and untargeted GC-MS approaches, we monitored qualitative and quantitative changes of 312 metabolites in central and specialized metabolic pathways in a time-course study.

Results

The overall metabolomic changes induced by the three treatments included phenylpropanoid, flavonoid, and phytohormone biosynthetic pathways, as well as primary metabolism in amino acid and sugar biosynthesis. In addition to shared metabolites, flg22, PstDC3000D28E and PstDC3000 each caused unique metabolite changes in the course of the development of PTI and ETI.

Conclusion

PstDC3000D28E triggered PTI responses were different from those of flg22. This study has not only revealed the discernible metabolomics features associated with the flg22, PstDC3000D28E and PstDC3000 treatments, but also laid a foundation toward further understanding of metabolic regulation and responses underlying plant PTI and ETI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afroz, A., Zahur, M., Zeeshan, N., & Komatsu S. (2013). Plant-bacterium interactions analyzed by proteomics. Frontiers in Plant Science, 4, 21. doi:10.3389/fpls.2013.00021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aliferis, K. A., Faubert, D., & Jabaji, S. (2014). A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS ONE, 9, e111930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allwood, J. W., Clarke, A., Goodacre, R., & Mur, L. A. (2010). Dual metabolomics: A novel approach to understanding plant-pathogen interactions. Phytochemistry, 71, 590–597.

    Article  PubMed  Google Scholar 

  • Allwood, J. W., Heald, J., Lloyd, A. J., Goodacre, R., & Mur, L. A. (2012). Separating the inseparable: The metabolomic analysis of plant-pathogen interactions. In: N. W. Hardy & R. D. Hall (Eds.), Plant metabolomics (pp. 31–49). Humana Press.

  • Bauer, Z., Gómez-Gómez, L., Boller, T., & Felix, G. (2001). Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. Journal of Biological Chemistry, 276, 45669–45676.

    Article  CAS  PubMed  Google Scholar 

  • Bednarek, P., Piślewska-Bednarek, M., Svatoš, A., Schneider, B., Doubský, J., Mansurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 57, 289–300.

    Google Scholar 

  • Block, A., Li, G., Fu, Z. Q., & Alfano, J. R. (2008). Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology, 11, 396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker, A., Komoriya, K., & Aizawa, S. I. (2003). Type III secretion systems and bacterial flagella: Insights into their function from structural similarities. Proceedings of the National Academy of Sciences of the United States of America, 100, 3027–3030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., et al. (2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 100, 10181–10186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  • Carviel, J. L., Wilson, D. C., Isaacs, M., Carella, P., Catana, V., Golding, B., et al. (2014). Investigation of intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions using a fast neutron-generated mutant allele of EDS5 identified by genetic mapping and whole-genome sequencing. PLoS ONE, 9, e88608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceoldo, S., Toffali, K., Mantovani, S., Baldan, G., Levi, M., & Guzzo, F. (2009). Metabolomics of Daucus carota cultured cell line under stressing conditions reveals interactions between phenolic compounds. Plant Science, 176, 553–565.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., et al. (2013). A novel integrated method for largescale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 6, 1769–1780.

    Article  CAS  PubMed  Google Scholar 

  • Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis, G. R. (2010). The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery. Biological Chemistry, 391, 745–751.

    Article  CAS  PubMed  Google Scholar 

  • Cunnac, S., Chakravarthy, S., Kvitko, B. H., Russell, A. B., Martin, G. B., & Collmer, A. (2011). Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proceedings of the National Academy of Sciences of the United States of America, 108, 2975–2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ditFrey, N. F., Garcia, A. V., Bigeard, J., Zaag, R., Bueso, E., Garmier, M., et al. (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defenses. Genome Biology, 15, R87.

    Article  Google Scholar 

  • Duan, G., Christian, N., Schwachtje, J., Walther, D., & Ebenhöh, O. (2013). The metabolic interplay between plants and phytopathogens. Metabolites, 3, 1–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, B., Kanani, H., Quackenbush, J., & Klapa, M. I. (2009). Time-series integrated “omic” analyses to elucidate short-term stress-induced responses in plant liquid cultures. Biotechnology and Bioengineering, 102, 264–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, F., & Zhou, J. M. (2012). Plant-bacterial pathogen interactions mediated by type III effectors. Current Opinion in Plant Biology, 15, 469–476.

    Article  PubMed  Google Scholar 

  • Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee, D. Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant Journal, 53, 691–704.

    Article  CAS  PubMed  Google Scholar 

  • Gachon, C. M., Langlois-Meurinne, M., Henry, Y., & Saindrenan, P. (2005). Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: Functional and evolutionary implications. Plant Molecular Biology, 58, 229–245.

    Article  CAS  PubMed  Google Scholar 

  • Galán, J. E., & Collmer, A. (1999). Type III secretion machines: Bacterial devices for protein delivery into host cells. Science, 284, 1322–1328.

    Article  PubMed  Google Scholar 

  • Galán, J. E., & Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444, 567–573.

    Article  PubMed  Google Scholar 

  • García-Alcalde, F., García-López, F., Dopazo, J., & Conesa, A. (2011). Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics, 27, 137–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholami, M., Boughton, B. A., Fakhari, A. R., Ghanati, F., Mirzaei, H. H., Borojeni, L. Y., et al. (2014). Metabolomic study reveals a selective accumulation of l-arginine in the d-ornithine treated tobacco cell suspension culture. Process Biochemistry, 49, 140–147.

    Article  CAS  Google Scholar 

  • Grapov, D., & Newman, J. W. (2012). imDEV: A graphical user interface to R multivariate analysis tools in Microsoft Excel. Bioinformatics, 28, 2288–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, X., Buchholz, G., & Nick, P. (2013). The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells. Journal of Experimental Botany, 64, 1805–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hann, D. R., Domínguez-Ferreras, A., Motyka, V., Dobrev, P. I., Schornack, S., & Jehle, A. (2014). The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytologist, 201, 585–598.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Ketchum, R. E. B., Rithner, C. D., Qiu, D., Kim, Y. S., Williams, R. M., & Croteau, R. B. (2003). Taxus metabolomics: Methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry, 62, 901–909.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. K., Bamba, T., Harada, K., Fukusaki, E., & Kobayashi, A. (2007). Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 58, 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Kim, JI., Dolan, W. L., Anderson, N. A., & Chapple, C., (2015). Indole glucosinolate biosynthesis limits phenylpropanoid accumulation in Arabidopsis thaliana. Plant Cell, 27, 1529–1546.

    Article  CAS  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@ CSB. DB: The Golm metabolome database. Bioinformatics, 21, 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, C., Jost, R., Lipschis, M., Kopp, B., Hartmann, M., & Hell, R. (2007). Sulfur-enhanced defence: Effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology, 9, 608–619.

    Article  CAS  PubMed  Google Scholar 

  • Kuehn, H., Liberzon, A., Reich, M., Mesirov, J. P. (2008). Using GenePattern for gene expression analysis. Current protocols in bioinformatics. doi:10.1002/0471250953.bi0712s22.

    PubMed Central  Google Scholar 

  • Less, H., Angelovici, R., Tzin, V., & Galili, G. (2011). Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell, 23, 1264–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeberg, M., Cunnac, S., & Collmer, A. (2012). Pseudomonas syringae type III effector repertoires: Last words in endless arguments. Trends in Microbiology, 20, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Ford, K. L., Roessner, U., Natera, S., Cassin, A. M., Patterson, J. H., et al. (2013a). Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics, 13, 2046–2062.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J., et al. (2010). Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell, 22, 3845–3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Wang, L., Cai, G., Jiang, S., Sun, L., & Li, D. (2013b). Response of tobacco to the Pseudomonas syringae pv. tomato DC3000 is mainly dependent on salicylic acid signaling pathway. FEMS Microbiology Letters, 344, 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Zhang, H., Yu, B., Xiong, L., & Xia, Y. (2015). Proteomic identification of early salicylate-and flg22-responsive redox-sensitive proteins in Arabidopsis. Scientific Reports, 5, 8625. doi:10.1038/srep08625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mine, A., Sato, M., & Tsuda, K. (2014). Toward a systems understanding of plant-microbe interactions. Front Plant Science5, 423. doi:10.3389/fpls.2014.00423.

    Article  Google Scholar 

  • Misra, B. B., Assmann, S. M., & Chen, S. (2014). Plant single-cell and single-cell-type metabolomics. Trends Plant Science, 19, 637–646.

    Article  CAS  Google Scholar 

  • Misra, B. B., de Armas, E., Tong, Z., & Chen, S. (2015). Metabolomic responses of guard cells and mesophyll cells to bicarbonate. PLOS One, 10, e0144206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Naseem, M., Kaltdorf, M., Hussain, A., & Dandekar, T. (2013). The impact of cytokinin on jasmonate-salicylate antagonism in Arabidopsis immunity against infection with PstDC3000. Plant Signaling & Behavior, 8, e26791.

    Article  Google Scholar 

  • Návarová, H., Bernsdorff, F., Döring, A. C., & Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell, 24, 5123–5141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noutoshi, Y., Jikumaru, Y., Kamiya, Y., & Shirasu, K. (2012). ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid. Scientific Reports, 2, 705. doi:10.1038/srep00705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh, C. S., & Martin, G. B. (2011). Effector-triggered immunity mediated by the pto kinase. Trends in Plant Science, 16, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Peck, S. C., Nühse, T. S., Hess, D., Iglesias, A., Meins, F., & Boller, T. (2001). Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell, 13, 1467–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pombo, M. A., Zheng, Y., Fernandez-Pozo, N., Dunham, D. M., Fei, Z., & Martin, G. B. (2014). Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biology, 15, 492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rausch, T., & Wachter, A. (2005). Sulfur metabolism: A versatile platform for launching defence operations. Trends Plant Science, 10, 503–509.

    Article  CAS  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing.. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

  • Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., & Mesirov, J. P. (2006). GenePattern 2.0. Nature Genetics, 38, 500–501.

    Article  CAS  PubMed  Google Scholar 

  • Rico, A., Bennett, M. H., Forcat, S., Huang, W. E., & Preston, G. M. (2010). Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE, 5, e8977.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, M. R. (2007). Does GABA act as a signal in plants? Hints from molecular studies. Plant Signaling & Behavior, 2, 408–409.

    Article  Google Scholar 

  • Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y., & Jones, J. D. (2011). The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant Journal, 67, 218–231.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 17. doi:10.3389/fpls.2014.00017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosli, H. G., Zheng, Y., Pombo, M. A., Zhong, S., Bombarely, A., Fei, Z., et al. (2013). Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biology, 14, R139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scalschi, L., Camañes, G., Llorens, E., Fernández-Crespo, E., López, M. M., García-Agustín, P., et al. (2014). Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants. PLoS ONE, 9, e106429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk, S. T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., et al. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26, 2708–2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenke, D., Boettcher, C., & Scheel, D. (2011). Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant, Cell and Environment, 34, 1849–1864.

    Article  CAS  PubMed  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (p. 337). New York: W.H. Freeman and Company.

    Google Scholar 

  • Soscia, C., Hachani, A., Bernadac, A., Filloux, A., & Bleves, S. (2007). Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. Journal of Bacteriology, 189, 3124–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, 10, 770–781.

    Article  CAS  Google Scholar 

  • Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2014). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32, 212–229.

    Article  Google Scholar 

  • Thilmony, R., Underwood, W., & He, S. Y. (2006). Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant Journal, 46, 34–53.

    Article  CAS  PubMed  Google Scholar 

  • Trdá, L., Fernandez, O., Boutrot, F., Héloir, M. C., Kelloniemi, J., Daire, X., et al. (2014). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytologist, 201, 1371–1384.

    Article  PubMed  Google Scholar 

  • Tsuda, K., Mine, A., Bethke, G., Igarashi, D., Botanga, C. J., Tsuda, Y., et al. (2013). Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genetics, 9, e1004015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsutsui, T., Nakano, A., & Ueda, T. (2015). The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant and Cell Physiology, 56, 1073–1083.

    Article  PubMed  Google Scholar 

  • Vargas, P., Farias, G. A., Nogales, J., Prada, H., Carvajal, V., Barón, M., et al. (2013). Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system. Environmental Microbiology Reports, 5, 841–850.

    Article  CAS  PubMed  Google Scholar 

  • Villela-Dias, C., Camillo, L. R., de Oliveira, G. A., Sena, J. A., Santiago, A. S., de Sousa, S. T., et al. (2014). Nep1-like protein from Moniliophthora perniciosa induces a rapid proteome and metabolome reprogramming in cells of Nicotiana benthamiana. Physiologia Plantarum, 150, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Walley, J. W., Kliebenstein, D. J., Bostock, R. M., & Dehesh, K. (2013). Fatty acids and early detection of pathogens. Current Opinion in Plant Biology, 16, 520–526.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J. G., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 36, 2085–2103.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. M., & Chai, J. (2008). Plant pathogenic bacterial type III effectors subdue host responses. Current Opinion in Microbiology, 11, 179–185.

    Article  PubMed  Google Scholar 

  • Zipfel, C., & Robatzek, S. (2010). Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiology, 154, 551–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation grant NSF-MCB-1158000 to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixue Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3277 kb)

Supplementary material 2 (XLSX 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, B.B., de Armas, E. & Chen, S. Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells. Metabolomics 12, 61 (2016). https://doi.org/10.1007/s11306-016-0984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-0984-y

Keywords

Navigation