Skip to main content
Log in

Spatial pattern of soil nitrogen availability and its relationship to stand structure in a coniferous-broadleaved mixed forest with a dense dwarf bamboo understory in northern Japan

  • Original Article
  • Published:
Ecological Research

Abstract

Natural disturbances create spatial patterns of the ecosystem processes and functions in natural forests. However, how dynamics and the spatial structure of forests relate to soil nitrogen dynamics is not well understood. We examined the spatial relationship between the distributions of canopy and understory species, and soil nitrogen dynamics in a natural coniferous-broadleaved mixed forest with a dense understory of Sasa dwarf bamboo in northern Japan. The O horizon was thick where coniferous litter predominated, and it was thin where broadleaved litter predominated. The soil water content was low in areas with a thick O horizon and a high abundance of coniferous trees. The soil nitrate content was low where the soil water content was low, and the soil nitrate content increased linearly with increasing net nitrification potential. These results suggest that the soil nitrate content under the coniferous canopy was lower because of the low nitrification potential of soil microbes in soils with low water contents. The soil nitrate content and nitrification potential were higher in the canopy gap than under the canopy. Our results suggest that forest structure, specifically the thickness of the forest floor, significantly affects the spatial pattern of the soil water content, thereby creating a spatial pattern of soil nitrogen availability at a relatively small scale with flat topography. The higher nitrification potential under the canopy gap could pose a long-term risk of nitrate leaching because of the suppression of the natural regeneration of canopy species by dense Sasa dwarf bamboo in this forest ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asbjornsen H et al (2011) Ecohydrological advances and applications in plant–water relations research: a review. J Plant Ecol 4:3–22. doi:10.1093/jpe/rtr005

    Article  Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems—the ecological basis for conservative management. Forest Ecol Manag 63:247–300. doi:10.1016/0378-1127(94)90114-7

    Article  Google Scholar 

  • Baldrian P, Merhautova V, Petrankova M, Cajthaml T, Snajdr J (2010) Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl Soil Ecol 46:177–182. doi:10.1016/j.apsoil.2010.08.013

    Article  Google Scholar 

  • Balisky AC, Burton PJ (1993) Distinction of soil thermal regimes under various experimental vegetation covers. Can J Soil Sci 73:411–420. doi:10.4141/cjss93-043

    Article  Google Scholar 

  • Barbier S, Balandier P, Gosselin F (2009) Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann For Sci 66:602. doi:10.1051/forest/2009041

    Article  Google Scholar 

  • Bengtson P, Falkengren-Grerup U, Bengtsson G (2005) Relieving substrate limitation-soil moisture and temperature determine gross N transformation rates. Oikos 111:81–90. doi:10.1111/j.0030-1299.2005.13800.x

    Article  Google Scholar 

  • Bengtson P, Falkengren-Grerup U, Bengtsson G (2006) Spatial distributions of plants and gross N transformation rates in a forest soil. J Ecol 94:754–764. doi:10.1111/j.1365-2745.2006.01143.x

    Article  CAS  Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? The Warp and Woof of tree-soil interactions. Biogeochemistry 42:89–106. doi:10.1023/a:1005948126251

    Article  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr. doi:10.1890/04-0988

    Google Scholar 

  • Boyden S, Montgomery R, Reich PB, Palik B (2012) Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure. Ecol Appl 22:1578–1588. doi:10.1890/11-1469.1

    Article  PubMed  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311. doi:10.1007/s004420050521

    Article  Google Scholar 

  • Bustamante M, Verdejo V, Zúñiga C, Espinosa F, Orlando J, Carú M (2012) Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil. Front Microbiol 3:282. doi:10.3389/fmicb.2012.00282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34. doi:10.1111/j.1469-8137.2005.01571.x

    Article  CAS  PubMed  Google Scholar 

  • Compton JE et al (2011) Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol Lett 14:804–815. doi:10.1111/j.1461-0248.2011.01631.x

    Article  PubMed  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65. doi:10.1016/s0012-8252(00)00011-8

    Article  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeogr 16:129–138. doi:10.1111/j.1466-8238.2006.00279.x

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Article  CAS  PubMed  Google Scholar 

  • Enriquez S, Duarte CM, Sandjensen K (1993) Patterns in decomposition rates among photosynthetic organisms—the importance of detritus C–N–P content. Oecologia 94:457–471. doi:10.1007/bf00566960

    Article  Google Scholar 

  • Ferrari JB, Sugita S (1996) A spatially explicit model of leaf litter fall in hemlock-hardwood forests. Can J Forest Res 26:1905–1913. doi:10.1139/x26-215

    Article  Google Scholar 

  • Finzi AC, Van Breemen N, Canham CD (1998) Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8:440–446. doi:10.2307/2641083

    Google Scholar 

  • Franklin JF (1993) Preserving biodiversity—species, ecosystems, or landscapes. Ecol Appl 3:202–205. doi:10.2307/1941820

    Article  PubMed  Google Scholar 

  • Gross KL, Pregitzer KS, Burton AJ (1995) Spatial variation in nitrogen availability in three successional plant communities. J Ecol 83:357–367. doi:10.2307/2261590

    Article  Google Scholar 

  • Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C (2009) Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci 172:500–511. doi:10.1002/jpln.200800072

    Article  CAS  Google Scholar 

  • Harpold AA, Molotch NP, Musselman KN, Bales RC, Kirchner PB, Litvak M, Brooks PD (2015) Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol Process 29:2782–2798. doi:10.1002/hyp.10400

    Article  Google Scholar 

  • Hirobe M, Tokuchi N, Iwatsubo G (1998) Spatial variability of soil nitrogen transformation patterns along a forest slope in a Cryptomeria japonica D. Don plantation. Eur J Soil Biol 34:123–131. doi:10.1016/S1164-5563(00)88649-5

    Article  Google Scholar 

  • Hirobe M, Koba K, Tokuchi N (2003) Dynamics of the internal soil nitrogen cycles under moder and mull forest floor types on a slope in a Cryptomeria japonica D. Don plantation. Ecol Res 18:53–64. doi:10.1046/j.1440-1703.2003.00532.x

    Article  Google Scholar 

  • Hiura T, Sano J, Konno Y (1996) Age structure and response to fine scale disturbances of Abies sachalinensis, Picea jezoensis, Picea glehnii, and Betula ermanii growing under the influence of a dwarf bamboo understory in northern Japan. Can J Forest Res 26:289–297. doi:10.1139/x26-032

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339. doi:10.1016/0169-5347(92)90126-v

    Article  CAS  PubMed  Google Scholar 

  • Isobe K et al (2015) Microbial regulation of nitrogen dynamics along the hillslope of a natural forest. Front Environ Sci 2:63. doi:10.3389/fenvs.2014.00063

    Article  Google Scholar 

  • John R et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869. doi:10.1073/pnas.0604666104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466. doi:10.1046/j.1461-0248.2002.00332.x

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74:1659–1673. doi:10.2307/1939924

    Article  Google Scholar 

  • Maurer GE, Bowling DR (2014) Seasonal snowpack characteristics influence soil temperature and water content at multiple scales in interior western US mountain ecosystems. Water Resour Res 50:5216–5234. doi:10.1002/2013wr014452

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Mercurio R (2007) Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. Forest Ecol Manag 242:412–418. doi:10.1016/j.foreco.2007.01.058

    Article  Google Scholar 

  • Naithani KJ, Baldwin DC, Gaines KP, Lin H, Eissenstat DM (2013) Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape. PLoS One. doi:10.1371/journal.pone.0058704

    PubMed  PubMed Central  Google Scholar 

  • Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428. doi:10.1890/1540-9295(2005)003[0421:uvaafe]2.0.co;2

  • Noguchi M, Yoshida T (2004) Tree regeneration in partially cut conifer-hardwood mixed forests in northern Japan: roles of establishment substrate and dwarf bamboo. Forest Ecol Manag 190:335–344. doi:10.1016/j.foreco.2003.10.024

    Article  Google Scholar 

  • Noguchi M, Yoshida T (2005) Factors influencing the distribution of two co-occurring dwarf bamboo species (Sasa kurilensis and S. senanensis) in a conifer-broad leaved mixed stand in northern Hokkaido. Ecol Res 20:25–30. doi:10.1007/s11284-004-0009-6

    Article  Google Scholar 

  • Ogawa A, Shibata H, Suzuki K, Mitchell MJ, Ikegami Y (2006) Relationship of topography to surface water chemistry with particular focus on nitrogen and organic carbon solutes within a forested watershed in Hokkaido, Japan. Hydrol Process 20:251–265. doi:10.1002/hyp.5901

    Article  CAS  Google Scholar 

  • Oren R, Ewers BE, Todd P, Phillips N, Katul G (1998) Water balance delineates the soil layer in which moisture affects canopy conductance. Ecol Appl 8:990–1002. doi:10.2307/2640956

    Article  Google Scholar 

  • Plant RE (2012) Spatial data analysis in ecology and agriculture using R. CRC Press, Boca Raton

    Book  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149. doi:10.1007/s10533-010-9439-0

    Article  CAS  Google Scholar 

  • Reich PB et al (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett. doi:10.1111/j.1461-0248.2005.00779.x

    PubMed  Google Scholar 

  • Robertson GP, Huston MA, Evans FC, Tiedje JM (1988) Spatial variability in a successional plant community—patterns of nitrogen availability. Ecology 69:1517–1524. doi:10.2307/1941649

    Article  Google Scholar 

  • Rothe A, Kreutzer K, Kuchenhoff H (2002) Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant Soil 240:47–56. doi:10.1023/a:1015822620431

    Article  CAS  Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J Forest Res 36:1345–1362. doi:10.1139/x06-025

    Article  Google Scholar 

  • Scott NA, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159. doi:10.1007/s004420050219

    Article  Google Scholar 

  • Tietema A, Warmerdam B, Lenting E, Riemer L (1992) Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: moisture and pH. Plant Soil 147:69–78. doi:10.1007/bf00009372

    Article  CAS  Google Scholar 

  • Tripathi SK, Sumida A, Shibata H, Ono K, Uemura S, Kodama Y, Hara T (2006) Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in Northern Japan. Biol Fert Soils 43:237–246. doi:10.1007/s00374-006-0100-y

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Vitousek PM et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.2307/2269431

    Google Scholar 

  • Vodde F et al (2011) The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest. J Forest Res Japan 16:155–167. doi:10.1007/s10310-011-0273-6

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Fukuzawa K, Shibata H (2013) Temporal changes in litterfall, litter decomposition and their chemical composition in Sasa dwarf bamboo in a natural forest ecosystem of northern Japan. J Forest Res-Jpn 18:129–138. doi:10.1007/s10310-011-0330-1

    Article  CAS  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi:10.1126/science.1116448

    Article  CAS  PubMed  Google Scholar 

  • IUSS Working group. WRB (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports 103, FAO, Rome

  • Yoshida T, Noguchi M (2009) Vulnerability to strong winds for major tree species in a northern Japanese mixed forest: analyses of historical data. Ecol Res 24:909–919. doi:10.1007/s11284-008-0566-1

    Article  Google Scholar 

  • Yoshida T, Noguchi M, Akibayashi Y, Noda M, Kadomatsu M, Sasa K (2006) Twenty years of community dynamics in a mixed conifer—broad-leaved forest under a selection system in northern Japan. Can J Forest Res 36:1363–1375. doi:10.1139/x06-041

    Article  Google Scholar 

Download references

Acknowledgements

We thank the technical staff and graduate students of the Northern Forestry Research and Development Office and the Uryu Experimental Forest of Field Science Center for the Northern Biosphere, Hokkaido University, for field and laboratory assistance during the course of this study. We also thank Dr. Junichi Kashiwagi for his help with the spatial analysis of our data, and Dr. Makoto Kobayashi for insightful comments on the manuscript. This work was partly supported by the Program for Risk Information on Climate Change, which was supported by the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Environment Research and Technology Development Fund (S-15) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Fukuzawa, K., Watanabe, T. et al. Spatial pattern of soil nitrogen availability and its relationship to stand structure in a coniferous-broadleaved mixed forest with a dense dwarf bamboo understory in northern Japan. Ecol Res 32, 227–241 (2017). https://doi.org/10.1007/s11284-017-1434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1434-7

Keywords

Navigation