Skip to main content
Log in

A Graph Coloring Based TDMA Scheduling Algorithm for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks should provide with valuable service, which is called service-oriented requirement. To meet this need, a novel distributed graph coloring based time division multiple access scheduling algorithm (GCSA), considering real-time performance for clustering-based sensor network, is proposed in this paper, to determine the smallest length of conflict-free assignment of timeslots for intra-cluster transmissions. GCSA involves two phases. In coloring phase, networks are modeled using graph theory, and a distributed vertex coloring algorithm, which is a distance-2 coloring algorithm and can get colors near to \((\updelta +1)\), is proposed to assign a color to each node in the network. Then, in scheduling phase, each independent set is mapped to a unique timeslot according to the set’s priority which is obtained by considering network structure. The experimental results indicate that GCSA can significantly decrease intra-cluster delay and increase intra-cluster throughput, which satisfies real-time performance as well as communication reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Weilian, Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Polastre, J., Szewczyk, R., Sharp, C., & Culler, D. (2004). The mote revolution: Low power wireless sensor network devices. In Proceedings of Hot Chips 16: A Symposium on High Performance Chips.

  3. Ergen, S. C., & Varaiya, P. (2005). On mulit-hop routing for energy efficiency. IEEE Communication Letters, 9(10), 880–881.

    Article  Google Scholar 

  4. Bao, L., & Garcia-Luna-Aceves, J. J. (2003). Topology management in ad hoc networks. In Proceedings of the 4th ACM international symposium on mobile adhoc networking & computing (pp. 129–140). doi:10.1145/778415.778432.

  5. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 21st international annual joint conference IEEE computer and communications societies (INFOCOM 2002).

  6. van Dam, T. & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 171–180). doi:10.1145/958491.958512.

  7. Rajendran, V., Obraczka, K., & Garcia- Luna-Aceves, J. J. (2003). Energy-efficient collision-free medium access control for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 181–192). doi:10.1145/958491.958513.

  8. Lu, G., Krishnamachari, B., & Raghavendra, C. S. (2004). An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In Proceedings of the 18th international parallel and distributed processing symposium, 2004.

  9. Ergen, S. C., & Varaiya, P. (2005). PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Transaction on Mobile Computing, 5(7), 920–930.

    Article  Google Scholar 

  10. Prabhakar, B., Uysal-Biyikoglu, E., & EI Gamal, A. (2002). Energy-efficient packet transmission over a wireless link. IEEE/ACM Transactions on Networking, 10(4), 487–499.

    Article  Google Scholar 

  11. Ergen, S. C., & Varaiya, P. (2010). TDMA scheduling algorithms for wireless sensor networks. Wireless Networks, 16(4), 985–997. doi:10.1007/s11276-009-0183-0.

    Article  Google Scholar 

  12. Berge, C. (1973). Graphs and Hypergraphs. Amsterdam: Elsevier.

    MATH  Google Scholar 

  13. Misra, J., & Gries, David. (1992). A constructive proof of Vizing’s theorem. Information Processing Letters, 41(3), 131–133. doi:10.1016/0020-0190(92)90041-S.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lloyd, E. L. (2002). Broadcast scheduling for TDMA in wireless multihop networks. Handbook of wireless networks and mobile computing (pp. 347–370). New York: Wiley.

  15. Ramaswami, R., & Parhi, K. K. (1989). Distributed scheduling of broadcasts in a radio network. In Proceedings of IEEE INFOCOM, 2, 497–504.

  16. Tavli, B., & Heinzelman, W. B. (2004). MH-TRACE: Multihop time reservation using adaptive control for energy efficiency. IEEE Journal on Selected Areas in Communications, 22(5), 942–953.

    Article  Google Scholar 

  17. Zhibin, W., & Raychaudhuri, D. (2004). D-LSMA: Distributed link scheduling multiple access protocol for QoS in Ad-hoc networks. IEEE GLOBECOM, 3, 1670–1675.

    Google Scholar 

  18. Gandham, S., Dawande, M., & Prakash, R. (2008). Link scheduling in wireless sensor networks: Distributed edge coloring revisited. Journal of Parallel Distributed computing, 68(8), 1122–1134. doi:10.1016/j.jpdc.2007.12.006.

    Article  MATH  Google Scholar 

  19. Chao, W., & Ssu, K.-F. (2010). A distributed collision-free low-latency link scheduling scheme in wireless sensor networks. IEEE Wireless Communications and Networking Conference (WCNC).

  20. Gross, J. L. & Yellen, J. (2005). Graph Theory and its applications (second edition). Chapman and Hall/CRC.

  21. Bondy, J. A., & Murty, U. S. R. (2008). Graph theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  22. Ramanathan, S., & Lloyd, E. L. (1993). Scheduling algorithms for multi-hop radio networks. IEEE/ACM Transactions on Networking, 1(2), 166–177. doi:10.1109/90.222924.

    Article  Google Scholar 

  23. Krumke, Sven O., & Marathe, M. V. (2001). Models and approximation algorithms for channel assignment in radio networks. Wireless Networks, 7(6), 575–584. doi:10.1023/A:1012311216333.

    Article  MATH  Google Scholar 

  24. Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. In Proceedings of the 1st IEEE International Conference on Distributed Computing in Sensor Systems (pp. 322–339). doi:10.1007/11502593_25.

  25. Turner, J. S. (1988). Almost all k-colorable graphs are easy to color. Journal of Algorithms, 9(1), 63–82. doi:10.1016/0196-6774(88)90005-3.

    Article  MathSciNet  MATH  Google Scholar 

  26. Matula, D. A., Marble, G., & Issacson, J. D. (1972). Graph coloring algorithms. In R. Read (Ed.), Graph Theory and Computing. New York: Academic Press.

  27. Marcus, D. A. (2008). Graph theory: A problem oriented approach. Mathematical Association of America.

  28. Ephremedis, A., & Truong, T. (1988). A distributed algorithm for efficient and interference free broadcasting in radio networks. In proceedings of INFOCOM (pp. 1119–1124).

  29. Ramaswami, R., & Parhi, K. K. (1989). Distributed scheduling of broadcasts in a radio network. In Proceedings of INFOCOM, 2, 497–504.

Download references

Acknowledgments

This research was supported by NSFC award 61073164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Zhao, Yn. & Mei, F. A Graph Coloring Based TDMA Scheduling Algorithm for Wireless Sensor Networks. Wireless Pers Commun 72, 1005–1022 (2013). https://doi.org/10.1007/s11277-013-1052-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1052-9

Keywords

Navigation