Skip to main content
Log in

Biomonitoring and Sourcing Toxic Elements Using Vascular Epiphytes of the Tillandsia Genus in the Mining Region of Taxco de Alarcón, Guerrero, Southern Mexico

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The concentration of As, Pb, Cd, Zn, Fe, Mn, and Cu and the Sr and Pb isotopic compositions were determined in four species of the vascular epiphyte Tillandsia (T. caput medusae, T. ionantha, T. recurvata, and T. sp), to evaluate their capacity to biomonitor the air quality and the sources of lithogenic particles and toxic elements in a severely contaminated site from the mining region of Taxco de Alarcón, Guerrero (southern Mexico). With the exception of Cu, mean concentrations are typically higher in the contaminated site relative to a reference (uncontaminated) site, and the incrustation of metal-bearing particles (mainly PM10 and PM2.5) on leaves and roots seems to be the most significant mechanism of incorporation of these pollutants to plants. The Sr isotopic composition indicated that surrounding lithology is the main source of lithogenic particles, whereas statistical tools and Pb isotope ratios revealed a genetic link of toxic elements in epiphytes with Taxco ores and mining wastes, which confirm the capacity of the evaluated epiphytes to record local environmental conditions. The presence of abundant metal-bearing particles, particularly in the PM2.5, may represent a serious threat to the health of wild fauna, livestock, and humans in the zone. The study demonstrated that vascular epiphytes of the Tillandsia genus could be used as an efficient, low-cost, biotechnological tool for monitoring the air quality in severely contaminated polymetallic sites such as mining and smelting zones, as well as for sourcing lithogenic and metal-bearing particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    CAS  Google Scholar 

  • Armienta, M. A., Talavera, M. O., Villaseñor, G., Espinosa, E., Pérez-Martínez, I., Cruz, O., & Aguayo, A. (2004). Environmental behavior of metals from tailings in shallow rivers: Taxco, Central Mexico. Applied Earth Science, 113(1), 76–82.

    Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and Geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5, 1000237. https://doi.org/10.4172/2381-8719.1000237.

    Article  Google Scholar 

  • Barre, J. P. G., Deletraz, G., Sola-Larrañaga, C., Santamaria, J. M., Bérail, S., Donard, O. F. X., & Amouroux, D. (2018). Multi-element isotopic signature (C, N, Pb, hg) in epiphytic lichens to discriminate atmospheric contamination as a function of land-use characteristics (Pyrénées-Atlantiques, SW France). Environmental Pollution, 243, 961–971. https://doi.org/10.1016/j.envpol.2018.09.003.

    Article  CAS  Google Scholar 

  • Becker, D. F. P., Linden, R., & Schmitt, J. L. (2017). Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient. Science of the Total Environment, 584, 48–54.

    Google Scholar 

  • Benzing, D. H. (1989). The mineral nutrition of epiphytes. In U. Lüttge (Ed.), Vascular plants as epiphytes. Ecological studies (analysis and synthesis) (Vol. 76). Berlin: Springer.

    Google Scholar 

  • Benzing, D. H. (1990). Vascular epiphytes. General biology and related biota. Cambridge: Cambridge University Press.

    Google Scholar 

  • Benzing, D. H. (2000). Bromeliaceae - profile of an adaptive radiation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Benzing, D. H., & Renfrow, A. (1974). The mineral nutrition of Bromeliaceae. Botanical Gazette, 135, 281–288. https://doi.org/10.1086/336762.

    Article  CAS  Google Scholar 

  • Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9, 279–286.

    CAS  Google Scholar 

  • Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R. V., Dentener, F., & Balakrishnan, K. (2015). Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental Science and Technology, 50, 79–88.

    Google Scholar 

  • Brighigna, L., Ravanelli, M., Minelli, A., & Ercoli, L. (1997). The use of an epiphyte (Tillandsia caput-medusae morren) as bioindicator of air pollution in Costa Rica. The Science of the Total Environment, 198, 175–180.

    CAS  Google Scholar 

  • Campa, U. M. F., & Ramírez, E. J. (1979). La evolución geológica y la metalogénesis del noroccidente de Guerrero. In Serie Técnico-Científica, 1 (101p). Guerrero: Universidad Autónoma de.

    Google Scholar 

  • Camprubí, A., & Albinson, T. (2006). Depósitos epitermales en México: actualización de su conocimiento y reclasificación empírica. Boletín de la Sociedad Geológica Mexicana, 58, 27–81.

    Google Scholar 

  • Cardelús, C. L., & Mark, M. C. (2010). The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecology, 207, 25–37.

    Google Scholar 

  • Carreras, H. A., & Pignata, M. L. (2002). Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environmental Pollution, 117, 77–87.

    CAS  Google Scholar 

  • Cen, S. (2015). Biological monitoring of air pollutants and its influence on human beings. Open Biomedical Engineering Journal, 9, 219–223. https://doi.org/10.2174/1874120701509010219.

    Article  CAS  Google Scholar 

  • Cumming, G. L. (1979). Isotopic composition of lead in Mexican mineral deposits. Economic Geology, 74, 1395–1407.

    CAS  Google Scholar 

  • des Rivieres, J., & Beals, D. (2011). The Taxco Mining District, Taxco de Alarcón, Guerrero, Mexico. The Mineralogical Record, 42, 401–445.

    Google Scholar 

  • Dótor-Almazán, A., Armienta-Hernández, M. A., Árcega-Cabrera, F., & Talavera-Mendoza, O. (2014). Procesos de transporte de arsénico y metales en aguas superficiales del distrito minero de Taxco, México: Aplicación de isótopos estables. Hidrobiológica., 24, 245–256.

    Google Scholar 

  • Dótor-Almazán, A., Armienta-Hernández, M. A., Talavera-Mendoza, O., & Ruiz, J. (2017). Geochemical behavior of cu and sulfur isotopes in the tropical mining region of Taxco, Guerrero (southern Mexico). Chemical Geology, 471, 1–12.

    Google Scholar 

  • Farfán-Panamá, J. L., Camprubi, A., González-Partida, E., Iriondo, A., & González-Torres, E. (2015). Geochronology of Mexican mineral deposits. III: the Taxco epithermal deposits, Guerrero. Boletín de la Sociedad Geológica Mexicana, 67, 357–366. https://doi.org/10.18268/BSGM2015v67n2a16.

    Article  Google Scholar 

  • Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., Milian, F. M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environmental Pollution, 145, 279–292.

    CAS  Google Scholar 

  • Froger, C., Ayrault, S., Evrard, O., Monvoisin, G., Bordier, L., Lefèvre, I., & Quantin, C. (2018). Tracing the sources of suspended sediment and particle-bound trace metal elements in an urban catchment coupling elemental and isotopic geochemistry, and fallout radionuclides. Environmental Science and Pollution Research, 25, 28667–28681.

    CAS  Google Scholar 

  • Galer, S. J. G., & Abouchami, W. (1998). Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineralogical Magazine, 62, 491–492.

    Google Scholar 

  • Goix, S., Resongles, E., Point, D., Oliva, P., Dupre, J.-L., la Galvez, E., Ugarte, L., Huyta, C., Prunier, J., Zouiten, C., & Gardon, J. (2013). Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context. Atmospheric Environment, 80, 330–341.

    CAS  Google Scholar 

  • Gómez-Bernal, J. M., Santana-Carrillo, J., Romero-Martín, F., Armienta-Hernández, M. A., Morton-Bermea, O., & Ruiz-Huerta, E. A. (2010). Plantas de sitios contaminados con desechos mineros en Taxco, Guerrero, México. Boletín de la Sociedad Botánica de México, 87, 131–133.

    Google Scholar 

  • Graney, J. R., Edgerton, E. S., & Landis, M. S. (2019). Using Pb isotope ratios of particulate matter and epiphytic lichens from the Athabasca Oil Sands region in Alberta, Canada to quantify local, regional, and global Pb source contributions. The Science of the Total Environment, 654, 1293–1304.

    CAS  Google Scholar 

  • Gustafsson, J. P., Tiberg, C., Edkymish, A., & Kleja, D. B. (2011). Modelling lead(II) sorption to ferrihydrite and soil organic matter. Environment and Chemistry, 8, 485–492. https://doi.org/10.1071/EN11025.

    Article  CAS  Google Scholar 

  • Hietz, P., Wanek, W., & Popp, M. (1999). Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment, 22, 1435–1443.

    Google Scholar 

  • Karthikeyan, K. G., Ellioth, H. A., & Cannon, F. S. (1997). Adsorption and coprecipitation of copper with the hydrous oxides of iron and aluminum. Environmental Science & Technology, 31, 2721–2725.

    CAS  Google Scholar 

  • Kassambara, A. (2015). Factoextra: Visualization of the outputs of a multivariate analysis. R Package version, 1, 1–75.

    Google Scholar 

  • Koz, B., Celik, N., & Cevik, U. (2010). Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecological Indicators, 10, 762–765.

    CAS  Google Scholar 

  • Méndez-Ramírez, M., & Armienta-Hernández, M. A. (2012). Distribución de Fe, Zn, Pb, Cu, Cd y As originada por residuos mineros y aguas residuales en un transecto del Río Taxco en Guerrero, México. Revista Mexicana de Ciencias Geológicas, 29, 450–462.

    Google Scholar 

  • Moreno-Godínez, M. E., Acosta-Saavedra, L. C., Meza-Figueroa, D., Vera, E., Cebrian, M. E., Ostrosky-Wegman, P., & Calderon-Aranda, E. S. (2010). Biomonitoring of metal in children living in a mine tailings zone in southern Mexico: A pilot study. International Journal of Hygiene and Environmental Health, 213, 252–258.

    Google Scholar 

  • Park, J. K., Choi, M. S., Song, Y., & Lim, D. I. (2017). Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea coast. Ocean Science Journal, 52, 177–192.

    CAS  Google Scholar 

  • Pellegrini, E., Lorenzini, G., Loppi, S., & Nali, C. (2014). Evaluation of the suitability of Tillandsia usneoides (L.) as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmospheric Pollution Research, 5, 226–235.

    CAS  Google Scholar 

  • Pignata, M. L., Gudiño, G. L., Wannaz, E. D., Plá, R. R., González, C. M., Carreras, H. A., & Orellana, L. (2002). Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environmental Pollution, 120, 59–68.

    CAS  Google Scholar 

  • Quevedo-Castañon, N. M., Talavera-Mendoza, O., Ramírez-Guzmán, A. H., Dótor-Almazán, A., Sampedro-Rosas, M. L., & Rosas-Acevedo, J. L. (2019). Partición de elementos potencialmente tóxicos en los jales mineros del Arroyo Xochula de Taxco de Alarcón, Guerrerro. Tlamati, 10, 5–21.

    Google Scholar 

  • Quevedo-Castañón, N. M., Talavera-Mendoza, O., Salgado-Souto, S. A., Ruiz, J., Dótor-Almazán, A., Ramírez-Guzmán, A. H., Sampedro-Rosas, L., Rosas-Acevedo, J. L., & Chávez-González, J. D. (2020). Temporal and spatial hydrogeochemical evolution and lead isotopic composition of a contaminated stream of Taxco, Guerrero, Mexico. Revista Mexicana de Ciencias Geológicas, 37, 64–79. https://doi.org/10.22201/cgeo.20072902e.2020.1.1087.

    Article  Google Scholar 

  • Ramić, E., Huremović, J., Muhić-Šarac, T., Dug, S., Žero, S., & Olovčić, A. (2019). Biomonitoring of air pollution in Bosnia and Herzegovina using epiphytic lichen Hypogymnia physodes. Bulletin of Environmental Contamination and Toxicology, 102, 763–769. https://doi.org/10.1007/s00128-019-02595-0.

    Article  CAS  Google Scholar 

  • Rodriguez, J. H., Weller, S. B., Wannaz, E. D., Klumpp, A., & Pignata, M. L. (2011). Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecological Indicators, 11, 1673–1680.

    CAS  Google Scholar 

  • Romero, F. M., Armienta-Hernández, M. A., & González-Hernández, G. (2007). Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Applied Geochemistry, 22, 109–127.

    CAS  Google Scholar 

  • Ruiz-Huerta, E., & Armienta-Hernández, M. A. (2012). Acumulación de arsénico y metales pesados en maíz en suelos cercanos a jales o residuos mineros. Revista Internacional de Contaminación Ambiental, 28, 103–117.

    Google Scholar 

  • Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., & Katsouyanni, K. (2008). Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environmental Health Perspectives, 116, 1480–1486. https://doi.org/10.1289/ehp.11345.

    Article  Google Scholar 

  • Santiago, L. S., Silvera, K., Andrade, J. L., & Dawson, T. E. (2017). Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition. Environmental Research Letters, 12, 115006. https://doi.org/10.1088/1748-9326/aa8959.

    Article  CAS  Google Scholar 

  • Schreck, E., Sarret, G., Oiliva, P., Calas, A., Sobanska, S., Guédron, S., Barraza, F., Point, D., Huayta, C., Conture, R.-M., Prunier, J., Henry, M., Tisserand, D., Goix, S., Chincheros, J., & Uzu, G. (2016). Is Tillandsia capillaris an efficient bioindicator of atmospheric metal and metalloid deposition? Insights from five months of monitoring in an urban mining area. Ecological Indicators, 67, 227–237.

    CAS  Google Scholar 

  • Schreck, E., Viers, J., Blondet, I., Auda, Y., Macouin, M., Zouiten, C., Freydier, R., Dufréchou, G., Chmeleff, J., & Darrozes, J. (2020). Tillandsia usneoides as biomonitors of trace elements contents in the atmosphere of the mining district of Cartagena-La Unión (Spain): New insights for element transfer and pollution source tracing. Chemosphere., 241, 124955. https://doi.org/10.1016/j.chemosphere.2019.124955.

    Article  CAS  Google Scholar 

  • Smith, A. J. E. (1982). Epiphytes and Epiliths. In A. J. E. Smith (Ed.), Bryophyte ecology. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-5891-3_7.

    Chapter  Google Scholar 

  • Soto-Ríos, M. L., Juárez-Pérez, C. A., Rendon-Gandarilla, F. J., Talavera-Mendoza, O., & Aguilar-Madrid, G. (2017). Elevated blood Lead levels in children associated with living near mining waste sites in Guerrero/Mexico. Environments, 4, 41. https://doi.org/10.3390/environments4020041.

    Article  Google Scholar 

  • Talavera-Mendoza, O., Moreno-Tovar, R., Dótor-Almazán, A., Flores-Mundo, N., & Duarte-Gutiérrez, C. (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofisica International, 44, 49–64.

    Google Scholar 

  • Talavera-Mendoza, O., Armienta-Hernández, M. A., García-Abundis, J. G., & Flores-Mundo, N. (2006). Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco, Guerrero, Southern Mexico. Environmental Geochemistry and Health, 28, 243–255.

    CAS  Google Scholar 

  • Talavera-Mendoza, O., Ruiz, J., Díaz-Villaseñor, E., Ramírez-Guzmán, A., Cortés, A., Salgado-Souto, S. A., & Rivera-Bustos, R. (2016). Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach. Applied Geochemistry, 73-81.

  • Team, R.C., 2018. R: A language and environment for statistical computing; 2015.

    Google Scholar 

  • Thibodeau, A. M., Habicht-Mauche, J. A., Huntley, D. L., Chesley, J. T., & Ruiz, J. (2013). High precision isotopic analyses of lead ores from New Mexico by MC-ICP-MS: Implications for tracing the production and exchange of Pueblo IV glaze-decorated pottery. Journal of Archaeological Science, 40, 3067–3075.

    CAS  Google Scholar 

  • Thompson, J. E. (2018). Airborne particulate matter: Human exposure and health effects. Journal of Occupational and Environmental Medicine, 60, 392–423. https://doi.org/10.1097/JOM.0000000000001277.

    Article  CAS  Google Scholar 

  • Tong, S., Schirnding, Y. E. V., & Prapamontol, T. (2000). Environmental lead exposure: A public health problem of global dimensions. Bull. World Health Organization, 78, 1068–1077.

    CAS  Google Scholar 

  • Vázquez-Bahéna, A. B., Talavera-Mendoza, O., Moreno-Godinez, M. E., Salgado-Souto, S. A., Ruiz, J., & Huerta-Beristain, G. (2017). Source apportionment of lead in the blood of women of reproductive age living near tailings in Taxco, Guerrero, Mexico: An isotopic study. Science of the Total Environment, 583, 104–114.

    Google Scholar 

  • Wannaz, E. D., Carreras, H. A., Rodriguez, J. H., & Pignata, M. L. (2012). Use of biomonitors for the idntification of heavy metals emission sources. Ecological Indicators, 20, 163–169.

    CAS  Google Scholar 

  • Widory, D., Vautour, G., & Poirier, A. (2018). Atmospheric dispersion of trace metals between two smelters: An approach coupling lead, strontium and osmium isotopes from bioindicators. Ecological Indicators, 84, 497–506.

    CAS  Google Scholar 

  • Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: Principles, possibilities and perspectives. Environmental Pollution, 120, 11–21.

    CAS  Google Scholar 

  • World Health Organization. (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. Copenhagen: World Health Organization.

    Google Scholar 

  • Xing, Y.-F., Xu, Y.-H., Shi, M.-H., & Lian, Y.-X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8, E69–E74.

    Google Scholar 

  • Zotz, G., & Hietz, P. (2001). The physiological ecology of vascular epiphytes: Current knowledge, open questions. Journal of Experimental Botany, 364, 2067–2078. https://doi.org/10.1093/jexbot/52.364.2067.

    Article  Google Scholar 

  • Zotz, G. (2016). Plants on plants –the biology of vascular epiphytes (292p). Basel: Springer International Publishing.

    Google Scholar 

Download references

Acknowledgments

This contribution is part of the Ph D thesis by JEMR who benefited from a scholarship by Conacyt. Authors are grateful to Jazmin Alaide López Díaz for technical support in the acquisition of SEM images and EDX analyses and Analine B. Vázquez-Bahena for helping in the preparation and digestion of samples. Assistance by Mark Baker during the acquisition of Pb and Sr isotopic data is also greatly appreciated. This contribution was partly supported by a Conacyt Basic Research Grant (CB-2014-01-241696) to Lopezaraiza-Mikel and research facilities grants (INFR-2014-02-231511 and INFR-2017-01-281180) to Talavera-Mendoza. We are grateful to Travis Ashworth for the detailed review of the English version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Talavera-Mendoza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Tillandsia records toxic elements of suspended particulate in mining regions

• Incrustation of particles on leaves and roots is the main mechanism of accumulation

• Statistics reveals a genetic link of As, Pb, Zn, Cd, Fe, Mn, and Cu in epiphytes

Sr and Pb isotopes identify sources of lithophile and chalcophile elements

• Metal-bearing PM 2.5 represents a threat to fauna including humans in the zone

Supplementary Information

Table S1

Concentrations (in mg kg−1) of TEs of epiphytes from the contaminated and reference sites from the mining region of Taxco de Alarcón, Guerrero, Mexico. Arithmetic mean, standard deviation and Sr-normalized EF. p-values indicate significance between individuals from the contaminated and reference sites (PDF 52 kb)

Table S2

Pearson correlation coefficients between metals and arsenic in epiphytes from the mining region of Taxco de Alarcón, Guerrero. Green cells are correlation coefficients of epiphytes from the contaminated site and orange cells are from the reference site (n = 12 each). Bolt values highlight significant correlations (p < 0.05) (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Ramos, J.E., Talavera-Mendoza, O., Lopezaraiza-Mikel, M.E. et al. Biomonitoring and Sourcing Toxic Elements Using Vascular Epiphytes of the Tillandsia Genus in the Mining Region of Taxco de Alarcón, Guerrero, Southern Mexico. Water Air Soil Pollut 232, 9 (2021). https://doi.org/10.1007/s11270-020-04961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04961-9

Keywords

Navigation