Skip to main content
Log in

Determination of Cadmium in Tap, Sea and Waste Water Samples by Vortex-Assisted Dispersive Liquid-Liquid-Solidified Floating Organic Drop Microextraction and Slotted Quartz Tube FAAS After Complexation with a Imidazole Based Ligand

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study presents a combination of dispersive liquid-liquid-solidified floating organic drop microextraction (DLLSFODM) and slotted quartz tube (SQT) with conventional flame atomic absorption spectrometry (FAAS) to improve the sensitivity for cadmium determination. A ligand namely 2-(4-methylphenyl)-1H-imidazo-[4,5-f]-[1,10]-phenanthroline which has not been used in trace analyte determination was used to form a cadmium complex. Stepwise optimization of parameters affecting complex formation (pH, ligand, and buffer solution) and extraction (extraction and dispersive solvents, salt effect and mixing) was done to maximize cadmium absorbance. The slotted quartz tube was fitted onto the flame burner and optimized to increase residence time of atoms in the flame. Instrumental parameters such as sample and fuel flow rate were also optimized to further enhance the absorbance signal for cadmium. Using optimal parameters and values, the limits of detection and quantification were determined to be 0.81 and 2.69 μg L−1, respectively. Low percent relative standard deviations (< 6.0%) indicated good precision for both extraction and instrumental measurements. Recovery tests were used to determine the accuracy of the method and the recovery results obtained were between 88 and 113%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkaya, E., Chormey, D.S. and Bakirdere, S. (2017). Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy. Environmental Monitoring and Assessment.

  • Al-Saidi, H. M., Abdel-Fadeel, M. A., El-Sonbati, A. Z., & El-Bindary, A. A. (2015). Determination of bismuth in different samples by dispersive liquid–liquid microextraction coupled with microvolume β-correction spectrophotometry. Journal of Molecular Liquids, 212, 635–640.

    Article  CAS  Google Scholar 

  • Al-Saidi, H. M., & Emara, A. A. A. (2014). The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. Journal of Saudi Chemical Society, 18, 745–761.

    Article  Google Scholar 

  • Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35.

    Article  Google Scholar 

  • Alturiqi, A. S., & Albedair, L. A. (2012). Evaluation of some heavy metals in certain fish, meat and meat products in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38, 45–49.

    Article  Google Scholar 

  • Arpa Şahin, Ç., & Durukan, İ. (2011). Ligandless-solidified floating organic drop microextraction method for the preconcentration of trace amount of cadmium in water samples. Talanta, 85, 657–661.

    Article  Google Scholar 

  • Aydin, I., Chormey, D.S., Budak, T., Firat, M., Turak, F. and Bakirdere, S. (2017). 63316. J AOAC Int.

  • Bakirdere, S., Aydin, F., Bakirdere, E. G., Titretir, S., Akdeniz, I., Aydin, I., Yildirim, E., & Arslan, Y. (2011). From mg/kg to pg/kg levels: a story of trace element determination: a review. Applied Spectroscopy Reviews, 46, 38–66.

    Article  CAS  Google Scholar 

  • Bakırdere, S., Chormey, D. S., Büyükpınar, Ç., San, N., & Keyf, S. (2016). Determination of lead in drinking and wastewater by hydride generation atomic absorption spectrometry. Analytical Letters, 49, 1917–1925.

    Article  Google Scholar 

  • Batista, B. L., da Silva, L. R. S., Rocha, B. A., Rodrigues, J. L., Berretta-Silva, A. A., Bonates, T. O., Gomes, V. S. D., Barbosa, R. M., & Barbosa, F. (2012). Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Research International, 49, 209–215.

    Article  CAS  Google Scholar 

  • Bello-López, M. Á., Ramos-Payán, M., Ocaña-González, J. A., Fernández-Torres, R., & Callejón-Mochón, M. (2012). Analytical applications of hollow fiber liquid phase microextraction (HF-LPME): a review. Analytical Letters, 45, 804–830.

    Article  Google Scholar 

  • Bernhoft, R.A. (2013). Cadmium Toxicity and Treatment. The Scientific World Journal, 2013, 7.

  • Bezerra, M. A., Arruda, M. A. Z., & Ferreira, S. L. C. (2005). Cloud point extraction as a procedure of separation and pre-concentration for metal determination using Spectroanalytical techniques: a review. Applied Spectroscopy Reviews, 40, 269–299.

    Article  CAS  Google Scholar 

  • Chand, V., & Prasad, S. (2013). ICP-OES assessment of heavy metal contamination in tropical marine sediments: a comparative study of two digestion techniques. Microchemical Journal, 111, 53–61.

    Article  CAS  Google Scholar 

  • Chormey, D. S., Büyükpınar, Ç., Turak, F., Komesli, O. T., & Bakırdere, S. (2017). Simultaneous determination of selected hormones, endocrine disruptor compounds, and pesticides in water medium at trace levels by GC-MS after dispersive liquid-liquid microextraction. Environmental Monitoring and Assessment, 189, 277.

    Article  Google Scholar 

  • Dadfarnia, S., Haji Shabani, A. M., & Kamranzadeh, E. (2009). Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS. Talanta, 79, 1061–1065.

    Article  CAS  Google Scholar 

  • Demirtaş, İ., Bakırdere, S., & Ataman, O. Y. (2015). Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap. Talanta, 138, 218–224.

    Article  Google Scholar 

  • Fırat, M., Bakırdere, S., Fındıkoğlu, M. S., Kafa, E. B., Yazıcı, E., Yolcu, M., Büyükpınar, Ç., Chormey, D. S., Sel, S., & Turak, F. (2017). Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 129, 37–41.

    Article  Google Scholar 

  • He, Y., von Lampe, K., Wood, L., & Kurti, M. (2015). Investigation of lead and cadmium in counterfeit cigarettes seized in the United States. Food and Chemical Toxicology, 81, 40–45.

    Article  CAS  Google Scholar 

  • Jain, A., & Verma, K. K. (2011). Recent advances in applications of single-drop microextraction: A review. Analytica Chimica Acta, 706, 37–65.

    Article  CAS  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.

    Article  Google Scholar 

  • Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238, 201–208.

    Article  Google Scholar 

  • Kasa, N. A., Chormey, D. S., Büyükpınar, Ç., Turak, F., Budak, T. B., & Bakırdere, S. (2017). Determination of cadmium at ultratrace levels by dispersive liquid-liquid microextraction and batch type hydride generation atomic absorption spectrometry. Microchemical Journal, 133, 144–148.

    Article  CAS  Google Scholar 

  • Khalili Zanjani, M. R., Yamini, Y., Shariati, S., & Jönsson, J. Å. (2007). A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 585, 286–293.

    Article  CAS  Google Scholar 

  • Kılınç, E., Bakırdere, S., Aydın, F., & Ataman, O. Y. (2013). In situ atom trapping of bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies. Spectrochimica Acta Part B: Atomic Spectroscopy, 89, 14–19.

    Article  Google Scholar 

  • Machado, R. C., Amaral, C. D. B., Schiavo, D., Nóbrega, J. A., & Nogueira, A. R. A. (2017). Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements. Microchemical Journal, 130, 271–275.

    Article  CAS  Google Scholar 

  • Özzeybek, G., Erarpat, S., Chormey, D. S., Fırat, M., Büyükpınar, Ç., Turak, F., & Bakırdere, S. (2017). Sensitive determination of copper in water samples using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Microchemical Journal, 132, 406–410.

    Article  Google Scholar 

  • Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering, 83, 52–59.

    Article  CAS  Google Scholar 

  • Tsogas, G. Z., Giokas, D. L., & Vlessidis, A. G. (2009). Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance. Journal of Hazardous Materials, 163, 988–994.

    Article  CAS  Google Scholar 

  • Turan, N. B., Chormey, D. S., Büyükpınar, Ç., Engin, G. O., & Bakirdere, S. (2017). Quorum sensing: little talks for an effective bacterial coordination. TrAC Trends in Analytical Chemistry, 91, 1–11.

    Article  CAS  Google Scholar 

  • Uslu, H., Büyükpınar, Ç., Unutkan, T., Serbest, H., San, N., Turak, F., & Bakırdere, S. (2018). A novel analytical method for sensitive determination of lead: hydrogen assisted T-shape slotted quartz tube-atom trap-flame atomic absorption spectrometry. Microchemical Journal, 137, 155–159.

    Article  CAS  Google Scholar 

  • Yu, Q.-Y., Huang, J.-F., Shen, Y., Xiao, L.-M., Liu, J.-M., Kuang, D.-B., & Su, C.-Y. (2013). Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution. RSC Advances, 3, 19311–19318.

    Article  CAS  Google Scholar 

  • Zhang, J.-W., Wang, Y.-K., Du, X., Lei, X., Ma, J.-J., & Li, J.-C. (2011). Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace cadmium in water samples by flame atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 22, 446–453.

    Article  CAS  Google Scholar 

  • Zhang, X., & Cresswell, M. (2016). Chapter 3—materials characterization of inorganic controlled release. In Inorganic Controlled Release Technology (pp. 57–91). Boston: Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Zhong, C., Huang, H., He, A., & Zhang, H. (2008). Synthesis and luminescent properties of novel polymeric metal complexes with bis(1,10-phenanthroline) group. Dyes and Pigments, 77, 578–583.

    Article  CAS  Google Scholar 

  • Zhong, W.-S., Ren, T., & Zhao, L.-J. (2016). Determination of Pb (lead), Cd (cadmium), Cr (chromium), Cu (copper), and Ni (nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Food and Drug Analysis, 24, 46–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fındıkoğlu, M.S., Fırat, M., Chormey, D.S. et al. Determination of Cadmium in Tap, Sea and Waste Water Samples by Vortex-Assisted Dispersive Liquid-Liquid-Solidified Floating Organic Drop Microextraction and Slotted Quartz Tube FAAS After Complexation with a Imidazole Based Ligand. Water Air Soil Pollut 229, 37 (2018). https://doi.org/10.1007/s11270-018-3689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3689-1

Keywords

Navigation