Skip to main content

Advertisement

Log in

Removal of Fluoride from Drinking Water Using Novel Adsorbent Magnesia-Hydroxyapatite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In many parts of the world, fluoride in drinking water is responsible for notable public health issues. The present study is aimed to prepare a new adsorbent magnesia-hydroxyapatite (Mg-HAP) that can serve as a valuable defluoridating agent. Characterization of the synthesized adsorbent was done by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM), and Scanning electron microscope (SEM)/Energy-dispersive X-ray spectroscopy (EDX) analysis to reveal the bonding patterns, phase characteristics, and microstructural and morphological details. The influences of pH, adsorbent dose, contact time, and initial fluoride concentration and the effect of interfering anions were studied. The defluoridation capacity was evaluated to be 1.4 mg/g, and the adsorbent showed very good capability to remove fluoride from contaminated water over a wide range of pH. Equilibrium modeling was done, and the experimental data was fitted into Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Study of the kinetic data for the adsorption process revealed that it follows pseudo-second-order reaction. It also indicated that the intraparticle diffusion contributes to the rate-determining step in the process. The quality of treated water was analyzed for total dissolved solids (TDS), turbidity, residual calcium, residual phosphorus content, electrical conductivity, hardness, and total alkalinity. The results obtained were very promising and confirmed the prospects of usage of Mg-HAP in defluoridation of drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

q e :

Amount of adsorption at equilibrium (mg/g)

q t :

Amount of adsorption at time t (mg/g)

C 0 :

Initial concentrations of fluoride (mg/L)

C e :

Equilibrium concentrations of fluoride (mg/L)

C t :

Concentration of fluoride at time t (mg/L)

v :

Volume of the aqueous solution (L)

m :

Adsorbent mass (g)

Q 0 :

Maximum adsorption capacity reflecting complete monolayer (mg/g)

R L :

Separation factor depicting favorability of the process

b :

Langmuir constant related to energy

K f :

Freundlich constants (mg/g)

N :

Heterogeneity factor

R :

Universal gas constant (8.314 J/mol K)

T :

Temperature (K)

A T :

Temkin isotherm equilibrium binding constant (L/g)

B T :

Temkin isotherm constant

b 1 :

Adsorption rate constant of first order reaction (min−1)

b 2 :

Adsorption rate constant of first order reaction (g mg−1 min−1)

k i :

Intraparticle diffusion rate constant (mg g−1 min−1/2)

a :

Initial adsorption rate (mg g−1 min−1)

α :

Desorption rate (g mg−1)

B :

Dubinin-Radushkevich isotherm constant

q d :

Theoretical isotherm saturation capacity (mg/g)

ε :

Polanyi potential

k p :

Particle diffusion coefficient (min−1)

References

  • APHA. (1995). Standard methods (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487.

    Article  CAS  Google Scholar 

  • Bhargava, D. S., & Killedar, D. J. (1992). Fluoride adsorption on fishbone charcoal through a moving media adsorber. Water Research, 26(6), 781–788.

    Article  CAS  Google Scholar 

  • Chen, Q. Z., Wong, C. T., Lu, W. W., Cheung, K. M. C., Leong, J. C. Y., & Luk, K. D. K. (2004). Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials, 25(18), 4243-4254.

  • Choubisa, S. L., Choubisa, L., & Choubisa, D. (2009). Osteo-dental fluorosis in relation to nutritional status, living habits, and occupation in rural tribal areas of Rajasthan, India. Fluoride, 42, 210.

    Google Scholar 

  • Daifullah, A. A. M., Yakout, S. M., & Elreefy, S. A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 147, 633–643.

    Article  CAS  Google Scholar 

  • Davila-Rodriguez, J. L., Escobar-Barrios, V. A., Shirai, K., & Rangel-Mendez, J. R. (2009). Synthesis of a chitin-based biocomposite for water treatment: optimization for fluoride removal. Journal of Fluorine Chemistry, 130(8), 718–726.

    Article  CAS  Google Scholar 

  • Essadki, A. H., Gourich, B., Vial, C., Delmas, H., & Bennajah, M. (2009). Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor. Journal of Hazardous Materials, 168(2), 1325–1333.

    Article  CAS  Google Scholar 

  • Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37, 4929–4937.

    Article  CAS  Google Scholar 

  • Fawell, K., Bailey, J., Chilton, E., Dahi, L., Fewtrell, Y., Magara. (2006) Fluoride in drinking-water. World Health Organization.

  • Gao, S., Sun, R., Wei, Z., Zhao, H., Li, H., & Hu, F. (2009). Size-dependent defluoridation properties of synthetic hydroxyapatite. Journal of Fluorine Chemistry, 130(6), 550–556.

    Article  CAS  Google Scholar 

  • George, S., Pandit, P., & Gupta, A. B. (2010). Residual aluminium in water defluoridated using activated alumina adsorption—modeling and simulation studies. Water Research, 44(10), 3055–3064.

    Article  CAS  Google Scholar 

  • Gogoi, P. K., & Baruah, R. (2008). Fluoride removal from water by adsorption on acid activated kaolinite clay. Indian Journal of Chemical Technology, 15(5), 500–503.

  • Gogoi, S., Nath, S. K., Bordoloi, S., & Dutta, R. K. (2015). Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid. Journal of Environmental Management, 152, 132–139.

    Article  CAS  Google Scholar 

  • He, G. L., & Cao, S. R. (1996). Assessment of fluoride removal from drinking water by calcium phosphate systems. Fluoride, 29(4), 212–216.

    CAS  Google Scholar 

  • Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.

    Article  CAS  Google Scholar 

  • Hu, K., & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279(1), 529–538.

    Article  CAS  Google Scholar 

  • Hutson, N. D., & Yang, R. T. (1997). Theoretical basis for the Dubinin-Radushkevitch (DR) adsorption isotherm equation. Adsorption, 3(3), 189–195.

    Article  CAS  Google Scholar 

  • Indian Standard Drinking Water Specification. (2012). Bureau of Indian Standards. IS 10500.

  • Jain, S., & Jayaram, R. V. (2009). Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Separation Science and Technology, 44(6), 1436–1451.

  • Jimenez-Reyes, M., & Solache-Rios, M. (2010). Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite. Journal of Hazardous Materials, 180(1), 297–302.

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  • Liu, H., Deng, S., Li, Z., Yu, G., & Huang, J. (2010). Preparation of Al–Ce hybrid adsorbent and its application for defluoridation of drinking water. Journal of Hazardous Materials, 179(1), 424–430.

    Article  CAS  Google Scholar 

  • Long, H., Jin, Y., Lin, M., Sun, Y., Zhang, L., & Clinch, C. (2009). Fluoride toxicity in the male reproductive system. Fluoride, 42, 260–276.

    CAS  Google Scholar 

  • Maheshwari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1), 456–463.

    Article  Google Scholar 

  • Maliyekkal, S. M., Shukla, S., Philip, L., & Nambi, I. M. (2008). Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chemical Engineering Journal, 140(1), 183–192.

    Article  CAS  Google Scholar 

  • Mehta, D., George, S., & Mondal, P. (2014). Synthesis of hydroxyapatite by chemical precipitation technique and study of its biodegradability. International Journal of Research in Advent Technology, 2(4), 159–161.

    Google Scholar 

  • Mondal, P., & George, S. (2014). A review on adsorbents used for defluoridation of drinking water. Reviews in Environmental Science and Biotechnology, 14(2), 195–210.

    Article  Google Scholar 

  • Mondal, P., George, S., & Mehta, D. (2014). Use of calcite for defluoridation of drinking water in acidic medium. Research Journal of Chemical Science, 4, 62–65.

    Google Scholar 

  • Murray, J. J. (Ed.). (1986). Appropriate use of fluorides for human health. Geneva: World Health Organization.

    Google Scholar 

  • Orlovskii, V. P., Komlev, V. S., & Barinov, S. M. (2002). Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials, 38(10), 973–984.

    Article  CAS  Google Scholar 

  • Pekar, M. (2009). Fluoride anion binding by natural lignite (South Moravian Deposit of Vienna Basin). Water Air Soil Pollution, 197(1–4), 303–312.

  • Percival, M. (1999). Bone health & osteoporosis. Applied Nutritional Science Reports, 5, 1–5.

    Google Scholar 

  • Rafique, A., Awan, M. A., Wasti, A., Qazi, I. A., & Arshad, M. (2012). Removal of fluoride from drinking water using modified immobilized activated alumina. Journal of Chemistry. doi:10.1155/2013/386476.

  • Ramanan, S. R., & Venkatesh, R. (2004). A study of hydroxyapatite fibers prepared via sol–gel route. Materials Letters, 58(26), 3320–3323.

    Article  CAS  Google Scholar 

  • Ravindra, K., & Garg, V. K. (2007). Hydro-chemical survey of groundwater of Hisar city and assessment of defluoridation methods used in India. Environmental Monitoring and Assessment, 132(1-3), 33–43.

    Article  CAS  Google Scholar 

  • Russell, S. W., Luptak, K. A., Suchicital, C. T. A., Alford, T. L., & Pizziconi, V. B. (1996). Chemical and structural evolution of sol‐gel‐derived hydroxyapatite thin films under rapid thermal processing. Journal of the American Ceramic Society, 79(4), 837–842.

    Article  CAS  Google Scholar 

  • Sakhare, N., Lunge, S., Rayalu, S., Bakardjiva, S., Subrt, J., Devotta, S., & Labhsetwar, N. (2012). Defluoridation of water using calcium aluminate material. Chemical Engineering Journal, 203, 406–414.

    Article  CAS  Google Scholar 

  • Sargin, Y., Kizilyalli, M., Telli, C., & Güler, H. (1997). A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement: X-ray powder diffraction and IR studies. Journal of the European Ceramic Society, 17(7), 963–970.

    Article  CAS  Google Scholar 

  • Sarkar, M., Banerjee, A., Pramanick, P. P., & Sarkar, A. R. (2006). Use of laterite for the removal of fluoride from contaminated drinking water. Journal of Colloid and Interface Science, 302(2), 432–441.

    Article  CAS  Google Scholar 

  • Sehn, P. (2007). Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland. Desalination, 223, 73–84.

    Article  Google Scholar 

  • Sharma, J. D., Sohu, D., & Jain, P. (2009). Prevalence of neurological manifestations in a human population exposed to fluoride in drinking water. Fluoride, 42, 127–132.

    CAS  Google Scholar 

  • Spittle, B. (2008). Dyspepsia associated with fluoridated water. Fluoride, 41, 89.

    Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2008). Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies. Journal of Hazardous Materials, 155(1), 206–215.

    Article  CAS  Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2009). Fluoride sorption by nano-hydroxyapatite/chitin composite. Journal of Hazardous Materials, 172(1), 147–151.

    Article  Google Scholar 

  • Tatawat, R. K., & Chandel, C. S. (2008). A hydrochemical profile for assessing the groundwater quality of Jaipur City. Environmental Monitoring and Assessment, 143(1-3), 337–343.

    Article  CAS  Google Scholar 

  • Tor, A. (2006). Removal of fluoride from an aqueous solution by using montmorillonite. Desalination, 201(1), 267–276.

  • Tripathy, S. S., & Raichur, A. M. (2008). Abatement of fluoride from water using manganese dioxide-coated activated alumina. Journal of Hazardous Materials, 153(3), 1043–1051.

  • Trivedi, M. H., Sangai, N. P., Patel, R. S., Payak, M., & Vyas, S. (2012). Assessment of groundwater quality with special reference to fluoride and its impact on IQ of schoolchildren in six villages of the Mundra region, Kachchh, Gujarat, India. Fluoride, 45, 377–383.

    CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality, recommendations (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1), 1–8.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Materials Research Centre, Malaviya National Institute Jaipur for providing all the characterization facilities needed for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., George, S. Removal of Fluoride from Drinking Water Using Novel Adsorbent Magnesia-Hydroxyapatite. Water Air Soil Pollut 226, 241 (2015). https://doi.org/10.1007/s11270-015-2515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2515-2

Keywords

Navigation