Skip to main content

Advertisement

Log in

A Laboratory Study on Amending Mine Soil Quality

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two mine soils in southeastern Ohio do not support a luxurious vegetation growth probably because of soil-related constraints. Thus, a laboratory study was conducted to improve the mine soil quality using amendments of zeolite (two grain sizes), flue gas desulfurization gypsum (FGD), fly ash, and biosolids at an application rate of 10 % by weight. The results showed that FGD was the best amendment for increasing soil pH and improving seed germination of lettuce (Lactuca sativa) while biosolids significantly enhanced soil aggregate stability and saturated-water-holding capacity. Specifically, FGD increased soil pH from 3.1 to 5.0, and 4.2 to above 7.0, respectively. Elongation of the lettuce seedlings (shoots) in mine soil solutions was also enhanced by the amendment, from an initial length of 0–1.5 cm to 4.5–9.6 cm. Application of biosolids, on the other hand, increased the mean weight diameter of soil water-stable aggregates by two to four times from initial 0.5–1.6 mm to 2.0–2.9 mm. Saturated-water-holding capacity of both soils was also significantly improved by biosolids. But biosolids did not enhance soil plant-available-water-holding capacity. Neither zeolite nor fly ash significantly improved the mine soil qualities measured in our study. Soil chemical analyses showed that these mine soils neither contained high concentrations of heavy metals nor other toxins in solids or in solutions, suggesting that soil acidity is the only chemical constraint limiting the vegetation establishment and growth besides the nutrients deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D. C., & Weber, J. T. (2001). Influence of fly-ash on soil physical properties and turgrass establishment. Journal of Environmental Quality, 30(2), 596–601.

    Article  CAS  Google Scholar 

  • Akala, V. A., & Lal, R. (2001). Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. Journal of Environmental Quality, 30(6), 2098–2104.

    Article  CAS  Google Scholar 

  • Akala, V. A., & Lal, R. (2002). Soil organic carbon sequestration rates in reclaimed minesoils. In J. M. Kimble, R. Lal, & R. F. Follett (Eds.), Agricultural practices and policies for carbon sequestration in soil (pp. 297–304). Boca Raton: Lewis.

    Google Scholar 

  • Barnhisel, R. I., Darmody, R. G., & Daniels, W. L. (Eds.). (2000). Reclamation of drastically disturbed lands. Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

  • Bell, F. G., Donnelly, L. J., Bell, F. G., & Donnelly, L. J. (2006). Mining and its impact on the environment. New York: Taylor & Francis.

    Google Scholar 

  • Bendfeldt, E. S., Burger, J. A., & Daniels, W. L. (2001). Quality of amended mine soils after sixteen years. Soil Science Society of America Journal, 65(6), 1736–1744.

    Article  CAS  Google Scholar 

  • Bhumbla, D. K., Singh, R. N., & Keefer, R. F. (2000). Coal combustion by-product utilization for land reclamation. In R. I. Barnhisel, R. G. Darmody, & W. L. Daniels (Eds.), Reclamation of drastically disturbed lands (pp. 489–512). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (1979). Soil chemistry. New York: Wiley.

    Google Scholar 

  • Bowers, N., Pratt, J. R., Beeson, D., & Lewis, M. (1997). Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environmental Toxicology & Chemistry, 16(2), 207–213.

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen–total. In D. L. Sparks (Ed.), Methods of soil analysis (part 3): Chemical methods (pp. 1085–1121). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis (part 1): physical and mineralogical methods (2nd ed., pp. 635–662). Madison: American Society of Agronomy, & Soil Science Society of America.

    Google Scholar 

  • Chaney, K., & Swift, R. S. (1984). The influence of organic matter on aggregate stability in British soils. Journal of Soil Science, 35(2), 223–230.

    Article  CAS  Google Scholar 

  • Chang, A. C., Lund, L. J., Page, A. L., & Warneke, J. E. (1997). Physical properties of fly-ash-amended soils. Journal of Environmental Quality, 6(3), 267–270.

    Article  Google Scholar 

  • Clark, R. B., Ritchey, K. D., & Baligar, V. C. (2001). Benefits and constraints for use of FGD products on agricultural land. Fuel, 80, 821–827.

    Article  CAS  Google Scholar 

  • Cox, C.A. & Colvin, G.H. (1996). Evaluation of background metal concentrations in Ohio soils. www.coxcolvin.com/documents/OhioBackgroundMetals.pdf. Accessed 29 March 2013.

  • Coyne, M. S., Zhai, Q., Mackown, C. T., & Barnhisel, R. I. (1998). Gross nitrogen transformation rates in soil at a surface coal mine site reclaimed for prime farmland use. Soil Biology & Biochemistry, 30(8–9), 1099–1106.

    Article  CAS  Google Scholar 

  • Crews, J. T., & Dick, W. A. (1998). Liming acid forest soils with flue gas desulfurization by-product: growth of Northern read oak and leachate water quality. Environmental Pollution, 103(1), 55–61.

    Article  CAS  Google Scholar 

  • Daniels, W. L., & Haering, K. C. (1994). Use of sewage sludge for land reclamation in the central Appalachians. In C. E. Clapp, W. E. Larson, & R. H. Dowdy (Eds.), Sewage sludge: Land utilization and the environment (pp. 105–121). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Daniels, W. L, Stewart, B., Haering, K. C, & Zipper, C. (2002). The potential for beneficial reuse of coal fly ash in southwest Virginia mining environments. Virginia Cooperative Extension (VCE) publication 460–134. ww.pubs.ext.vt.edu/460-134. Accessed on 01 November, 2012.

  • DeSutter, T. M., Cihacek, L. J., & Raham, S. (2013). Application of flue gas desulfurization gypsum and its impact on wheat grain and soil chemistry. Journal of Environmental Quality (in press) doi:10.2134/jeq2012.0084. Accessed on 25 February, 2013.

  • Dick, W. A., Stehouwer, R. C., Bigham, J. M., Wolfe, W. E., Hao, Y. L., Adriano, D., Beeghly, J., & Haefner, R. J. (2000). Beneficial uses of flue gas desulfurization by-products: Examples and case studies of land application. In J. F. Power & W. A. Dick (Eds.), Land application of agricultural, industrial, and municipal by-products (pp. 505–536). Madison: Soil Science Society of America.

    Google Scholar 

  • Forsberg, L. S., & Ledin, S. (2006). Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings. Science of the Total Environment, 358(1–3), 21–35.

    Article  CAS  Google Scholar 

  • García-Orenes, F., Guerrero, C., Mataix-Solera, J., Navarro-Pedrenõ, J., Gómez, I., & Mataix-Beneyto, J. (2005). Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil & Tillage Research, 82(1), 65–76.

    Article  Google Scholar 

  • Garg, R. N., Pathak, H., Das, D. K., & Tomar, R. K. (2005). Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring & Assessment, 107(1–3), 1–9.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis (Part 1): Physical and mineralogical methods (2nd ed., pp. 383–411). Madison: American Society of Agronomy, & Soil Science Society of America.

  • Greb, S. F., Eble, C. F., Peters, D. C., & Papp, A. R. (2006). Coal and the environment. Alexandria: American Geological Institute.

    Google Scholar 

  • Haering, K. C., Daniels, W. L., & Feagley, S. E. (2000). Reclaiming mined lands with biosolids, manures and papermill sludges. In R. I. Barnhisel, R. G. Darmody, & W. L. Daniels (Eds.), Reclamation of drastically disturbed lands (pp. 615–644). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Haynes, R. J., & Swift, R. S. (1990). Stability of soil aggregates in relation to organic constituents and soil water content. Journal of Soil Science, 41(1), 73–83.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., & Lal, R. (2007). Carbon storage and minesoil properties in relation to topsoil application techniques. Soil Science Society of America Journal, 71(6), 1788–1795.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kepmer, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis (part 1): Physical and mineralogical methods (2nd ed., pp. 425–442). Madison: American Society of Agronomy, & Soil Science Society of America.

    Google Scholar 

  • Khaitan, S., Dzombak, D. A., & Lowry, G. V. (2009). Chemistry of the acid neutralization capacity of bauxite residue. Environmental Engineering Science, 26(5), 873–881.

    Article  CAS  Google Scholar 

  • Khaleel, R., Reddy, K. R., & Overcash, M. R. (1981). Changes in soil physical properties due to organic waste applications: a review. Journal of Environmental Quality, 10(2), 133–141.

    Article  Google Scholar 

  • Kost, D. A., Bigham, J. M., Stehouwer, R. C., Beeghly, J. H., Fowler, R., Traina, S. J., Wolfe, W. E., & Dick, W. A. (2005). Chemical and physical properties of dry flue gas desulfurization products. Journal of Environmental Quality, 34(2), 676–686.

    Article  CAS  Google Scholar 

  • Lal, R., & Bruce, J. P. (1999). The potential of world cropland to sequester carbon and mitigate the greenhouse effect. Environmental Science & Policy, 2, 177–185.

    Article  CAS  Google Scholar 

  • Larney, F. J., Akinremi, O. O., Lemke, R. L., Klaassen, V. E., & Janzen, H. H. (2005). Soil responses to topsoil replacement depth and organic amendments in wellsite reclamation. Canadian Journal of Soil Science, 85(2), 307–317.

    Article  CAS  Google Scholar 

  • Logan, T.J. & Miller, R.H. (1983). Background levels of heavy metals in Ohio farm soils. The Ohio State University, Ohio Agricultural Research and Development Center, Research Circular 275. http://ohioline.osu.edu/rc275/. Accessed 26 March 2013.

  • Nabuurs, G. J., Dolman, A. J., Verkaik, E., Kuikman, P. J., Van Diepen, C. A., Whitmore, A. P., Daamen, W. P., Oenema, O., Kabatand, P., & Mohren, G. M. J. (2000). Article 3.3 and 3.4 of the Kyoto protocol: consequences for industrialized countries’ commitment, the monitoring needs and possible side effects. Environmental Science & Policy, 3(2–3), 123–134.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis (part 3): Chemical methods (pp. 961–1010). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Ojeda, G., Alcaniz, J. M., & Bissonnais, Y. L. (2008). Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agriculture, Ecosystems & Environment, 125(1–4), 48–56.

    Article  Google Scholar 

  • Pathan, S. M., Aylmore, A. G., & Colmer, T. D. (2003). Properties of several flyash materials in relation to use as soil amendments. Journal of Environmental Quality, 32(2), 687–693.

    CAS  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1990). Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant & Soil, 123(1), 27–37.

    CAS  Google Scholar 

  • Roberts, J. A., Daniels, W. L., Bell, J. C., & Zipper, C. E. (1988). Early stages of mine soil genesis as affected by topsoiling and organic amendments. Soil Science Society of America Journal, 52(3), 730–738.

    Article  CAS  Google Scholar 

  • Salé, L. Y., Chanasyk, D. S., & Naeth, M. A. (1996). Temporal influence of fly ash on soil bulk density and aggregate size distribution. Proceedings of the 20th Annual British Columbia Mine Reclamation Symposium (pp. 184–195). BC, Canada: Kamloops.

    Google Scholar 

  • Shipitalo, M. J., & Bonta, J. V. (2008). Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth. Journal of Environmental Quality, 37(6), 2351–2359.

    Article  CAS  Google Scholar 

  • Shrestha, R. K., Lal, R., & Jacinthe, P. A. (2009). Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. Soil Science Society of America Journal, 73(3), 1004–1011.

    Article  CAS  Google Scholar 

  • Shukla, M., Lal, R., & Ebinger, M. H. (2005). Physical and chemical properties of a minespoil eight years after reclamation in northeastern Ohio. Soil Science Society of America Journal, 69(4), 1288–1297.

    Article  CAS  Google Scholar 

  • Sobek, A. A., Skousen, J. G., & Fisher, S. C., Jr. (2000). Chemical and physical properties of overburdens and minesoils. In R. I. Barnhisel, R. G. Darmody, & W. L. Daniels (Eds.), Reclamation of drastically disturbed lands (pp. 77–104). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Soltanpour, P. N., Johnson, G. W., Workman, S. M., Jones, J. B., Jr., & Miller, R. O. (1996). Inductively coupled plasma emission spectrometer and inductively coupled plasma-mass spectrometry. In D. L. Sparks (Ed.), Methods of soil analysis (part 3): Chemical methods (pp. 91–139). Madison: American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America.

    Google Scholar 

  • Spaccini, R., Piccolo, A., Mbagwu, J. S. C., Teshale, A. Z., & Igwe, C. A. (2002). Influence of the addition of organic residues on carbohydrates content and structural stability of some highlands soils in Ethiopia. Soil Use & Management, 18(4), 404–411.

    Article  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis (part 3): Chemical analysis (pp. 475–489). Madison: Soil Science Society of America, & American Society of Agronomy.

    Google Scholar 

  • Thompson, T. L., Hopkins, M. W., & White, S. A. (2001). Reclamation of copper mine tailings using biosolids and green waste. In R. Vincent (Ed.), Proceedings of 2001 land reclamation: A different approach. 18th annual meeting of the American society for surface mining and reclamation. Albuquerque, New Mexico, June 3–7, 2001 (pp. 448–456). Lexington: American Society for Surface Mining and Reclamation.

    Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water stable aggregates in soils. Journal of Soil Science, 33(2), 141–163.

    Article  CAS  Google Scholar 

  • Torbert, J. L., Tuladhar, A. R., Burger, J. A., & Bell, J. C. (1988). Minesoil property effects on the height of ten-year-old white pine. Journal of Environmental Quality, 17(2), 189–192.

    Article  CAS  Google Scholar 

  • Torrent, J., & Barrón, V. (1993). Laboratory measurements of soil color: theory and practice. In J. M. Bigham, E. J. Ciolkosz, & R. J. Luxmoore (Eds.), Soil color (pp. 21–33). SSSA Special Publication no. 31. Madison: Soil Science Society of America.

    Google Scholar 

  • Tsadilas, C. D., Mitsios, I. K., & Golia, E. (2005). Influence of biosolid application on some soil physical properties. Communications in Soil Science & Plant Analysis, 36(4–6), 709–716.

    Article  CAS  Google Scholar 

  • USDA (United States Department of Agriculture) & NRCS (Natural Resources Conservation Service) (1996). Soil survey of Muskingum Country, Ohio.

  • USEPA-United States Environmental Protection Agency: Office of Water. (2000). Biosolids technology fact sheet: Alkaline stabilization of biosolids. EPA 832-F-00-052. www.epa.gov/region8/water/biosolids/…/BiosolidsTechSheetAlk.pdf. Accessed 06 December 2012.

  • USEPA-United States Environmental Protection Agency. (2009). National Secondary Drinking Water Regulations. http://water.epa.gov/drink/contaminants/index.cfm#Inorganic. Accessed 06 December, 2012.

  • Wallace, B. M., Krzic, M., Forge, T. A., Broersma, K., & Newman, R. F. (2009). Biosolids increase soil aggregation and protection of soil carbon five years after application on a crested wheatgrass pasture. Journal of Environmental Quality, 38(1), 291–298.

    Article  CAS  Google Scholar 

  • Wei, Q., Lowery, B., & Peterson, A. E. (1985). Effects of sludge application on physical properties of a silty clay loam soil. Journal of Environmental Quality, 14(2), 178–180.

    Article  Google Scholar 

  • Younger, P. L. (2004). Environmental impacts of coal mining and associated wastes: A geochemical perspective (Special publications). London: England Geological Society.

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the following individuals: Mr. Basant Rimal for conducting laboratory assistance; Ms. Shanna Byrd (the Wilds) for assisting in obtaining soil samples; St Cloud Inc. (New Mexico) for providing zeolites; American Electric Power Inc. (Ohio) for providing fly ash and FGD, Columbus Wastewater Treatment plant for providing biosolids, Mr. Getulio Freitas for assistance with statistical analysis, and the team comprised of three postdoctoral researchers (Gerald Allen, Petra Stenberg, and Ruiqiang Liu) advised by professor Rattan Lal. This project was funded by the Ohio Coal Development Office

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Lal, R. A Laboratory Study on Amending Mine Soil Quality. Water Air Soil Pollut 224, 1679 (2013). https://doi.org/10.1007/s11270-013-1679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1679-x

Keywords

Navigation