Skip to main content
Log in

Degradation of Leather Dye Using CeO2–SnO2 Nanocomposite as Photocatalyst Under Sunlight

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanocomposite of CeO2–SnO2 containing different CeO2 contents was prepared by coprecipitation process. The material obtained was characterized by X-ray diffraction and N2 adsorption–desorption isotherms. Its photocatalytic activity was tested in the degradation of azo dye of leather, Direct Black 38, in aqueous solution under sunlight. The photocatalytic activity of the coupled CeO2–SnO2 oxide ranged depending on the CeO2 contents. The optimum amount of CeO2 for the synthesis of CeO2–SnO2 was 7 wt.% since the nanoparticles showed high photocatalytic activity in the degradation of the dye, similar to that of the TiO2–P25 photocatalyst. The kinetics of photocatalytic degradation and total organic carbon removal under sunlight were found to follow a first-order rate law. The results indicated that CeO2–SnO2 can be used for the removal of dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atribak, I. A., López, A., & García, A. (2008). Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides. Journal of Catalysis, 259, 123–132.

    Article  CAS  Google Scholar 

  • Collazzo, G. C., Foletto, E. L., Jahn, S. L., & Villetti, M. A. (2012). Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. Journal of Environmental Management, 98, 107–111.

    Article  CAS  Google Scholar 

  • Collazzo, G., Jahn, S. L., & Foletto, E. L. (2012). Removal of Direct Black 38 dye by adsorption and photocatalytic degradation on TiO2 prepared at low temperature. Latin American Applied Research, 42, 55–60.

    Google Scholar 

  • Foletto, E. F., Jahn, S. J., & Moreira, R. F. P. M. (2010). Hydrothermal preparation of Zn2SnO4 nanocrystals and photocatalytic degradation of a leather dye. Journal of Applied Electrochemistry, 40, 59–63.

    Article  CAS  Google Scholar 

  • Foletto, E. L., Battiston, S., Simões, J. M., Bassaco, M. M., Pereira, L. S. F., Flores, É. M. M., et al. (2012). Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous and Mesoporous Materials, 163, 29–33.

    Article  CAS  Google Scholar 

  • Gambhire, A. B., Land, M. K., Kalokhe, S. B., Shirsat, M. D., Patil, K. R., Gholap, R. S., et al. (2008). Synthesis and characterization of high surface area CeO2-doped SnO2 nanomaterial. Materials Chemistry and Physics, 112, 719–722.

    Article  CAS  Google Scholar 

  • Gu, L., Cao, X., & Zhao, C. (2008). Gram-scale preparation of hollow spheres of ZnS by scarifying ZnO crystallites within core–shell-structured ZnS/ZnO precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 326, 98–102.

    Article  CAS  Google Scholar 

  • Guettai, N., & Amar, H. A. (2005). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination, 185, 439–448.

    Article  CAS  Google Scholar 

  • Jiang, B., Zhang, S., Guo, X., Jin, B., & Tian, Y. (2009). Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Applied Surface Science, 255, 5975–5978.

    Article  CAS  Google Scholar 

  • Li, X. Z., Li, F. B., Yang, C. L., & Ge, W. K. (2001). Photocatalytic activity of WOx TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141, 209–217.

    Article  CAS  Google Scholar 

  • Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., et al. (2011). Highly efficient visible light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society, 133, 10878–10884.

    Article  CAS  Google Scholar 

  • Liu, B., Zhao, X., Zhang, N., Zhao, Q., He, X., & Feng, J. (2005). Photocatalytic mechanism of TiO2–CeO2 films prepared by magnetron sputtering under UV and visible light. Surface Science, 595, 203–211.

    Article  CAS  Google Scholar 

  • Liu, Z., Deng, J., Deng, J. J., & Li, F. F. (2008). Fabrication and photocatalysis of CuO/ZnO nanocomposites via a new method. Materials Science and Engineering: B, 150, 99–104.

    Article  CAS  Google Scholar 

  • Magesh, G., Viswanathan, B., Viswanathan, R. P., & Varadarajan, T. K. (2009). Photocatalytic behavior of CeO2–TiO2 system for the degradation of methylene blue. Indian Journal of Chemistry B, 48A, 480–488.

    CAS  Google Scholar 

  • Nayak, J., Sahu, S. N., Kasuya, J., & Nozaki, S. (2008). CdS–ZnO composite nanorods: synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Applied Surface Science, 254, 7215–7218.

    Article  CAS  Google Scholar 

  • Nguyen, T. B., Le, T. T. B., & Nguyen, N. L. (2010). The preparation of SnO2 and SnO2:Sb nanopowders by a hydrothermal method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1, 1–4.

    Google Scholar 

  • Noipa, K., & Pukird, S. (2010). Studies on the preparation and gas sensing properties of SnO2 nanostructures at room temperature. Advanced Materials Research, 93, 227–230.

    Article  Google Scholar 

  • Oyama, T., Aoshima, A., Horikoshi, S., Hidaka, H., Zhao, J., & Serpone, N. (2004). Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation. Solar Energy, 77, 525–532.

    Article  CAS  Google Scholar 

  • Pouretedal, H. R., Tofangsazi, Z., & Keshavarz, M. H. (2012). Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. Journal of Alloys and Compounds, 513, 359–364.

    Article  CAS  Google Scholar 

  • Ray, S., Dutta, J., Barua, A. K., & Deb, S. K. (1991). Bilayer SnO2:In/SnO2 thin films as transparent electrodes of amorphous silicon solar cells. Thin Solid Films, 199, 201–207.

    Article  CAS  Google Scholar 

  • Scibioh, M. A., Kim, S., Cho, E. A., Lim, T., Hong, S., & Ha, Y. H. (2008). Pt–CeO2/C anode catalyst for direct methanol fuel cells. Applied Catalysis B: Environmental, 84, 773–782.

    Article  CAS  Google Scholar 

  • Snaith, H. J., & Ducati, C. (2010). SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Letters, 10, 1259–1265.

    Article  CAS  Google Scholar 

  • Song, S., Xu, Z., He, L., Ying, H., Chen, J., Xiao, X., et al. (2008). Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst. Journal of Hazardous Materials, 152, 1301–1308.

    Article  CAS  Google Scholar 

  • Tai, C., Jiang, G., Liu, J., Zhou, Q., & Liu, J. (2005). Rapid degradation of bisphenol A using air as the oxidant catalyzed by polynuclear phthalocyanine complexes under visible light irradiation. Journal of Photochemistry Photobiology A: Chemistry, 172, 275–282.

    Article  CAS  Google Scholar 

  • Tanaka, S., & Saha, U. K. (1994). Effects of pH on photocatalysis of 2,4,6-trichlorophenol in aqueous TiO2 suspensions. Water Science and Technology, 30, 47–57.

    CAS  Google Scholar 

  • Wang, C., Wang, X., Xu, B., Zhao, J., Mai, B., Peng, P., et al. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry Photobiology A: Chemistry, 168, 47–52.

    Article  CAS  Google Scholar 

  • Wang, C., Xu, B., Wang, X., & Zhao, J. (2005). Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. Journal of Solid State Chemistry, 178, 3500–3506.

    Article  CAS  Google Scholar 

  • Wang, S., Huang, J., Zhao, Y., Wang, S., Wang, X., Zhang, T., et al. (2006). Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation. Journal of Molecular Catalisys A: Chemistry, 259, 245–252.

    Article  CAS  Google Scholar 

  • Wang, G., Xu, L., Zhang, J., Yin, T., Han, D. (2012). Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. International Journal of Photoenergy. doi: 10.1155/2012/265760.

  • Xia, H., Zhuang, H., Zhang, T., & Xiao, D. (2007). Photocatalytic degradation of acid Blue 62 over CuO–SnO2 nanocomposite photocatalyst under simulated sunlight. Journal of Environmental Science, 19, 1141–1145.

    Article  CAS  Google Scholar 

  • Xiang, Q., Yu, J., & Wong, P. K. (2011). Quantitative characterization of hydroxyl radicals produced by various photocatalysts. Journal of Colloid and Interface Science, 357, 163–167.

    Article  CAS  Google Scholar 

  • Xiang, Q., Yu, J., & Jaroniec, M. (2012a). Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41, 782–796.

    Article  CAS  Google Scholar 

  • Xiang, Q., Yu, J., & Jaroniec, M. (2012b). Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemistry Society, 134, 6575–6578.

    Article  CAS  Google Scholar 

  • Ye, M., Zhang, T., Zhu, Z., Zhang, Y., & Zhang, Y. (2011). Photodegradation of 4-chloronitrobenzene in the presence of aqueous titania suspensions in different gas atmospheres. Water Science and Technology, 64(7), 1466–1472.

    Article  CAS  Google Scholar 

  • Ying, Z., Wan, Q., Cao, H., Song, Z. T., & Feng, S. L. (2005). Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Applied Physics Letters, 87, 113108–113108.

    Article  Google Scholar 

  • Yu, J., Yu, H., Cheng, B., Zhou, M., & Zhao, X. (2006). Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. Journal of Molecular Catalysis A: Chemistry, 253, 112–118.

    Article  CAS  Google Scholar 

  • Yu, J., Xiang, Q., & Zhou, M. (2009). Preparation, characterization and visible light-driven photocatalytic activity of Fe-doped titania nanorods and first-principle study for electronic structures. Applied Catalysis B: Environmental, 90, 595–602.

    Article  CAS  Google Scholar 

  • Yu, J., Dai, G., Xiang, Q., & Jaroniec, M. (2011). Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed 001 facets. Journal of Materials Chemistry, 21, 1049–1057.

    Article  CAS  Google Scholar 

  • Zhang, J., Yu, J., Zhang, Y., Li, Q., & Gong, J. R. (2011). Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Letters, 11, 4774–4779.

    Article  CAS  Google Scholar 

  • Zhou, M., Yu, J., Liu, S., Zhai, P., & Jiang, L. (2008). Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. Journal of Hazardous Materials, 154, 1141–1148.

    Article  CAS  Google Scholar 

  • Zoh, K. D., Kim, T. S., Kim, J. G., & Choi, K. H. (2005). Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis. Water Science and Technology, 52(8), 45–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Foletto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foletto, E.L., Battiston, S., Collazzo, G.C. et al. Degradation of Leather Dye Using CeO2–SnO2 Nanocomposite as Photocatalyst Under Sunlight. Water Air Soil Pollut 223, 5773–5779 (2012). https://doi.org/10.1007/s11270-012-1313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1313-3

Keywords

Navigation