Skip to main content
Log in

Assessing Storm Water Detention Systems Treating Road Runoff with an Artificial Neural Network Predicting Fecal Indicator Organisms

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper examines whether multiple regression analysis and neural network models can be applied successfully for the indirect prediction of the runoff treatment performance with water quality indicator variables in an experimental storm water detention system rig. Five biologically mature experimental storm water detention systems with different designs treating concentrated gully pot liquor (spiked with dog droppings) were assessed. The systems were located on The King’s Buildings campus at The University of Edinburgh and were monitored for a period of 18 months. Multiple regression analyses indicated a relatively successful prediction of the biochemical oxygen demand and total suspended solids for most systems, but due to a relatively weak correlation between the predictors and both microbial indicators, multiple regression analyses were not applied for the prediction of intestinal enterococci and total coliform colony-forming units. However, artificial neural network models predicted microbial counts relatively well for most detention systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brion, G. M., & Lingireddy, S. (2003). Artificial neural network modeling: a summary of successful applications relative to microbial water quality. Water Science and Technology, 47, 235–240.

    CAS  Google Scholar 

  • Bulc, T., & Slak, A. S. (2003). Performance of constructed wetland for highway runoff treatment. Water Science and Technology, 48, 315–322.

    CAS  Google Scholar 

  • Butler, D., & Parkinson, J. (1997). Towards sustainable urban drainage. Water Science and Technology, 35, 53–63. doi:10.1016/S0273-1223(97)00184-4.

    Article  Google Scholar 

  • Butler, D., Friedler, E., & Gatt, K. (1995). Characterising the quantity and quality of domestic wastewater inflows. Water Science and Technology, 31, 13–24. doi:10.1016/0273-1223(95)00318-H.

    Article  CAS  Google Scholar 

  • EEC. (1991). EEC Urban Waste Water Treatment, Directive 91/271/EEC 1991. Brussels: European Economic Community.

    Google Scholar 

  • Ellis, B. (1991). Urban runoff quality in the UK – problems, prospects and procedures. Applied Geography (Sevenoaks, England), 11, 187–200. doi:10.1016/0143-6228(91)90029-9.

    Article  Google Scholar 

  • Gervin, L., & Brix, H. (2001). Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system. Water Science and Technology, 44, 171–176.

    CAS  Google Scholar 

  • Hamed, M. M., Khalafallah, M. G., & Hassanian, E. H. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19, 919–928. doi:10.1016/j.envsoft.2003.10.005.

    Article  Google Scholar 

  • He, L. M., & He, Z. L. (2008). Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research, 42, 2563–2573. doi:10.1016/j.watres.2008.01.002.

    Article  CAS  Google Scholar 

  • Iyengar, S. S., & Kashyap, R. L. (1989). Autonomous intelligent machines. Computer, 22(6), 14–15.

    Google Scholar 

  • Jeng, H. C., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with storm water suspended particles and estuarine sediment. Journal Environmental Science and Health, 40, 779–791. doi:10.1081/ESE-200048264.

    Article  CAS  Google Scholar 

  • Kay, D., Wyer, M., Crowther, J., Stapleton, C., Bradford, M., McDonald, A., et al. (2005). Predicting fecal indicator fluxes using digital land use data in the UK's sentinel Water Framework Directive catchment: The Ribble study. Water Research, 39, 3967–3981. doi:10.1016/j.watres.2005.07.006.

    Article  CAS  Google Scholar 

  • Lee, B. H., & Scholz, M. (2006). A comparative study: prediction of constructed treatment wetland performance with K-nearest neighbours and neural networks. Water, Air, and Soil Pollution, 174, 279–301. doi:10.1007/s11270-006-9113-2.

    Article  CAS  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (1996). The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32, 1013–1022.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (1998). The effect of internal parameters and geometry on the performance of back propagation neural networks: an empirical study. Environmental Modelling & Software, 13, 193–209. doi:10.1016/S1364-8152(98)00020-6.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modelling & Software, 15, 101–124. doi:10.1016/S1364-8152(99)00007-9.

    Article  Google Scholar 

  • Mas, D. M. L., & Ahlfeld, D. P. (2007). Comparing artificial neural networks and regression models for predicting fecal coliform concentrations. Hydrological Sciences Journal, 52, 713–731. doi:10.1623/hysj.52.4.713.

    Article  Google Scholar 

  • McCorquodale, J. A., Georgiou, I., Carnelos, S., & Englande, A. J. (2004). Modeling coliforms in storm water plumes. Journal of Environmental Engineering and Science, 3, 419–431. doi:10.1139/s03-055.

    Article  Google Scholar 

  • Memon, F. A., & Butler, D. (2002). Assessment of gully pot management strategies for runoff quality control using a dynamic model. The Science of the Total Environment, 295, 115–129. doi:10.1016/S0048-9697(02)00056-6.

    Article  CAS  Google Scholar 

  • Mohanty, S., Scholz, M., & Slater, M. J. (2002). Neural network simulation of the chemical oxygen demand reduction in a biological activated carbon filter. Journal of the Chartered Institution of Water and Environmental Management, 16, 58–64. doi:10.1111/j.1747-6593.2002.tb00369.x.

    Article  Google Scholar 

  • Neelakantan, T. R., Brion, G. M., & Lingireddy, S. (2001). Neural network modelling of Cryptosporidium and Giardia concentrations in the Delaware River, USA. Water Science and Technology, 43, 125–132.

    CAS  Google Scholar 

  • NRC. (2004). Indicators for waterborne pathogens. National Research Council of the National Academies (NRC). Washington, DC: The National Academies Press.

    Google Scholar 

  • O’Keefe, B., D’ Arcy, B. J., Barbarito, B., & Clelland, B. (2005). Urban diffuse sources of fecal indicators. Water Science and Technology, 51, 183–190.

    Google Scholar 

  • Olding, D. D., Steele, T. S., & Nemeth, J. C. (2004). Operational monitoring of urban stormwater management facilities and receiving subwatersheds in Richmond Hill, Ontario. Water Quality Research Journal of Canada, 39, 392–405.

    CAS  Google Scholar 

  • Rogers, L. L., & Dowla, F. U. (1994). Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research, 30, 457–481. doi:10.1029/93WR01494.

    Article  CAS  Google Scholar 

  • Sandhu, N., & Finch, R. (1996). Emulation of DWRDSM using artificial neural networks and estimation of Sacramento River flow from salinity. In Proceedings of the North American Water and Environment Conference (pp. 4335–4340). New York: ASCE.

    Google Scholar 

  • Sarle, W. (2002). The Neural Network FAQ. ftp://ftp.sas.com/pub/neural/FAQ4.html. Accessed November 2007.

  • Scholz, M. (2006). Wetland systems to control urban runoff. Amsterdam: Elsevier.

    Google Scholar 

  • Tomenko, V., Ahmed, S., & Popov, V. (2007). Modelling constructed wetland treatment system performance. Ecological Modelling, 205, 355–364. doi:10.1016/j.ecolmodel.2007.02.030.

    Article  Google Scholar 

  • Wu, J. S., & Ahlert, R. C. (1978). Assessment of methods for computing storm runoff loads. Journal of the American Water Resources Association, 14, 429–439. doi:10.1111/j.1752-1688.1978.tb02179.x.

    Article  Google Scholar 

  • Wu, J., Yu, S. L., & Zou, R. (2006). A water quality based approach for watershed wide BMP strategies. Journal of the American Water Resources Association, 42, 1193–1204.

    CAS  Google Scholar 

  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35–62. doi:10.1016/S0169-2070(97)00044-7.

    Article  CAS  Google Scholar 

  • Zurada, J. M. (1992). Introduction to Artificial Neural Systems. St. Paul: West.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alderburgh and Atlantis Water Management for their sponsorship, Dr. Kate Heal for her guidance, and numerous occasional students who helped out with technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemi Yazdi, S., Scholz, M. Assessing Storm Water Detention Systems Treating Road Runoff with an Artificial Neural Network Predicting Fecal Indicator Organisms. Water Air Soil Pollut 206, 35–47 (2010). https://doi.org/10.1007/s11270-009-0084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0084-y

Keywords

Navigation