Skip to main content
Log in

A Comparison of Variational and Markov Chain Monte Carlo Methods for Inference in Partially Observed Stochastic Dynamic Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Honerkamp, J. (1994). Stochastic dynamical systems. New York: VCH.

    Google Scholar 

  2. Wilkinson, D. J. (2006). Stochastic modelling for system biology. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  3. Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Anderson, B. D. O., & Moore, J. B. (2005). Optimal filtering. Mineola: Dover.

    MATH  Google Scholar 

  5. Kushner, H. J. (1967). Dynamical equations for optimal filter. Journal of Differential Equations, 3, 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  6. Stratonovich, R. L. (1960) Conditional markov processes. Theory of Probability and Its Applications, 5, 156–178.

    Article  Google Scholar 

  7. Pardoux, E. (1982). Équations du filtrage non linéaire de la prédiction et du lissage. Stochastics, 6, 193–231.

    MATH  MathSciNet  Google Scholar 

  8. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83D, 95–108.

    MathSciNet  Google Scholar 

  9. Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its applications. New York: Springer.

    MATH  Google Scholar 

  10. Archambeau, C., Cornford, D., Opper, M., & Shawe-Tayler, J. (2007). Gaussian process approximations of stochastic differential equations. Journal of Machine Learning Research Workshop and Conference Proceedings, 1, 1–16.

    Google Scholar 

  11. Klöden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin: Spinger.

    MATH  Google Scholar 

  12. Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine Learning, 50, 5–43.

    Article  MATH  Google Scholar 

  13. Hürzler, M. (1998). Statistical methods for general state-space models. PhD Thesis Nr. 12674, ETH Zürich.

  14. Alexander, F. J., Eyink, G. L., & Restrepo, J. M. (2005). Accelerated Monte Carlo for optimal estimation of time series. Journal of Statistical Physics, 119, 1331–1345.

    Article  MATH  Google Scholar 

  15. Gelb, A. (1974). Applied optimal estimation. Cambridge: MIT.

    Google Scholar 

  16. Evensen, G. (1992). Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. Journal of Geophysical Research, 97, 17905–17924.

    Article  Google Scholar 

  17. Evensen, G. (1994). Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162.

    Article  Google Scholar 

  18. Kitagawa, G. (1987). Non-Gaussian state space modelling of non-stationary time series. Journal of the American Statistical Association, 82, 503–514.

    MathSciNet  Google Scholar 

  19. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annal of Mathematical Statistics, 22, 79–86.

    Article  MATH  MathSciNet  Google Scholar 

  20. Jaakkola, T. S. (2001). Tutorial on variational approximation methods. In D. Saad, & M. Opper (Eds.), Advanced mean field methods. Cambridge: MIT.

    Google Scholar 

  21. Crisan, D., Del Moral, P., & Lyons, T. J. (1999). Interacting particle systems approximations of the Kushner-Stratonovich equation. Advances in Applied Probability, 31, 819–838.

    Article  MATH  MathSciNet  Google Scholar 

  22. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian process for machine learning. Cambridge: MIT.

    Google Scholar 

  23. Miller, R. N., Carter, E. F, & Blue, S. T. (1999). Data assimilation into nonlinear stochastic models. Tellus, 51A, 167–194.

    Google Scholar 

  24. Chan, G., & Wood, A. T. A. (1999). Simulation of stationary Gaussian vector fields. Statistics and Computing, 22, 265–268.

    Article  Google Scholar 

  25. Eyink, G. L., Restrepo, J. M., & Alexander, F. J. (2004). A mean-field approximation in data assimilation for nonlinear dynamics. Physica D, 194, 347–368.

    Article  MathSciNet  Google Scholar 

  26. Julier, S. J., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear tranformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45, 477–482.

    Article  MATH  MathSciNet  Google Scholar 

  27. Kitagawa, G. (1994). The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4), 605–623.

    Article  MATH  MathSciNet  Google Scholar 

  28. Alspach, D. L., & Sorenson, H. W. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions On Automatic Control, 17(4) 439–448.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Archambeau, C., Cornford, D. et al. A Comparison of Variational and Markov Chain Monte Carlo Methods for Inference in Partially Observed Stochastic Dynamic Systems. J Sign Process Syst 61, 51–59 (2010). https://doi.org/10.1007/s11265-008-0299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0299-y

Keywords

Navigation