Skip to main content

Advertisement

Log in

Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Nephrotic syndrome (NS) is an immune-mediated disorder associated with hyperlipidemia. NS has been proposed to be mediated through CD80-related T cell immune response, which could be blocked using soluble cytotoxic T lymphocyte-associated s(CTLA)-4. Although ghrelin is a hormone-modulating lipid metabolism and suppressing immune system, the precise role of ghrelin in NS is not well established.

Methods

We evaluated the levels of ghrelin, soluble CD80 (sCD80) and sCTLA4 in serum and urine in doxorubicin-induced NS in rats. We also investigated the relation between their levels and the levels of serum total cholesterol (TC), triglyceride, albumin and urine protein.

Results

While urinary ghrelin levels were significantly lower in the nephrotic rats compared to the control group, serum ghrelin levels were comparable in the nephrotic and control rats. In contrast, serum and urinary sCD80 and sCTLA4 levels were higher in the nephrotic rats than the controls. The urinary ghrelin levels were negatively correlated with the levels of serum triglyceride, TC and urine protein, sCD80 and sCTLA4. The urine sCD80 levels were positively correlated with the TC, urine protein and urine sCTLA4 levels, and negatively correlated with the serum albumin. The urine sCTLA4 levels were positively correlated with the TC and urine protein levels and negatively correlated with the serum albumin levels. In regression analysis, the urine ghrelin levels significantly relate to urine sCD80 levels. Besides, hyperlipidemia in NS did not appear to be related to serum ghrelin levels.

Conclusion

Low urine ghrelin levels might be relevant to pathogenesis of doxorubicin-induced NS. The reduction in urine ghrelin levels might also be associated with increased levels of urine sCTLA4 and sCD80 which reflect proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosoda H, Kojima M, Kangawa K (2006) Biological, physiological, and pharmacological aspects of ghrelin. J Pharmacol Sci 100:398–410

    Article  CAS  PubMed  Google Scholar 

  2. Verhulst PJ, Depoortere I (2012) Ghrelin’s second life: from appetite stimulator to glucose regulator. World J Gastroenterol 18:3183–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    Article  CAS  PubMed  Google Scholar 

  4. Lim CT, Kola B, Korbonits M (2011) The ghrelin/GOAT/GHS-R system and energy metabolism. Rev Endocr Metab Disord 12:173–186

    Article  CAS  PubMed  Google Scholar 

  5. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM et al (2007) The central melanocortin system directly controls peripheral lipid metabolism. J Clin Investig 117:3475–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews ZB, Erion DM, Beiler R, Choi CS, Shulman GI, Horvath TL (2010) Uncoupling protein-2 decreases the lipogenic actions of ghrelin. Endocrinology 151:2078–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perez-Tilve D, Hofmann SM, Basford J, Nogueiras R, Pfluger PT, Patterson JT, Grant E, Wilson-Perez HE, Granholm NA, Arnold M, Trevaskis JL, Butler AA, Davidson WS, Woods SC, Benoit SC, Sleeman MW, DiMarchi RD, Hui DY, Tschöp MH (2010) Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci 13:877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheyuo C, Jacob A, Wang P (2012) Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis. Am J Physiol Endocrinol Metab 1(302):E265–E272

    Article  Google Scholar 

  9. Granado M, Priego T, Martin AI, Villanua MA, Lopez-Calderon A (2005) Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am J Physiol Endocrinol Metab 288:486–492

    Article  Google Scholar 

  10. Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E (2011) Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology 94:89–100

    Article  CAS  PubMed  Google Scholar 

  11. Rajan D, Wu R, Shah KG, Jacob A, Coppa GF, Wang P (2012) Human ghrelin protects animals from renal ischemia-reperfusion injury through the vagus nerve. Surgery 151:37–47

    Article  PubMed  Google Scholar 

  12. Khowailed A, Younan SM, Ashour H, Kamel AE, Sharawy N (2015) Effects of ghrelin on sepsis induced acute kidney injury: one step forward. Clin Exp Nephrol 19:419–426

    Article  CAS  PubMed  Google Scholar 

  13. Baatar D, Patel K, Taub DD (2011) The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 20(340):44–58

    Article  Google Scholar 

  14. Elie V, Fakhoury M, Deschênes G, Jacqz-Aigrain E (2012) Physiopathology of idiopathic nephrotic syndrome: lessons from glucocorticoids and epigenetic perspectives. Pediatr Nephrol 27:1249–1256

    Article  PubMed  Google Scholar 

  15. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH (2011) Minimal change disease: a“two-hit”podocyte immune disorder? Pediatr Nephrol 26:645–649

    Article  PubMed  Google Scholar 

  16. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH (2014) Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol 29:2333–2340

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, Meng Q (2015) Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr Nephrol 30:309–316

    Article  PubMed  Google Scholar 

  18. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA (2011) Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev 241:180–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishimoto T, Shimada M, Araya CE, Huskey J, Garin EH, Johnson RJ (2011) Minimal change disease: a CD80 podocytopathy? Semin Nephrol 31:320–325

    Article  CAS  PubMed  Google Scholar 

  20. Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology 16:30–38

    Article  PubMed  Google Scholar 

  21. Ebal E, Cavalié H, Michaux O, Lac G (2007) Effect of a lipid-enriched diet on body composition and some regulatory hormones of food intake in growing rats. Ann Endocrinol (Paris) 68:366–371

    Article  CAS  Google Scholar 

  22. Zhang Z, Li Q, Liu F, Sun Y, Zhang J (2010) Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice. Acta Biochim Biophys Sin (Shanghai) 15(42):202–208

    Article  Google Scholar 

  23. Aydin S, Sahin I, Ozkan Y, Dag E, Gunay A, Guzel SP, Catak Z, Ozercan MR (2012) Examination of the tissue ghrelin expression of rats with diet-induced obesity using radioimmunoassay and immunohistochemical methods. Mol Cell Biochem 365:165–173

    Article  CAS  PubMed  Google Scholar 

  24. Saverino Daniele, Simone Rita, Bagnasco Marcello, Pesce Giampaola (2010) The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Autoimmun Highlights 1:73–81

    Article  CAS  Google Scholar 

  25. Taub DD (2008) Novel connections between the neuroendocrine and immune systems: the ghrelin immunoregulatory network. Vitam Hormon 77:325–346

    Article  CAS  Google Scholar 

  26. Cheyuo C, Wu R, Zhou M, Jacob A, Coppa G, Wang P (2011) Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve. Shock 35:258–265

    Article  CAS  PubMed  Google Scholar 

  27. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    Article  CAS  PubMed  Google Scholar 

  28. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, Johnson RJ (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakthivel P, Wermeling F, Elmgren A, Hulthe J, Kakoulidou M, Lefvert AK, Lind L (2010) Circulating soluble CTLA-4 is related to inflammatory markers in the 70 year old population. Scand J Clin Lab Investig 70:237–243

    Article  CAS  Google Scholar 

  30. Li JY, Yong TY, Michael MZ, Gleadle JM (2010) Review: the role of microRNAs in kidney disease. Nephrology (Carlton) 15:599–608

    Article  CAS  Google Scholar 

  31. Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, Shi Y, Hu J, Guan X, Xia Z, Wang J, Zen K, Zhang CY, Zhang C (2013) Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem 59:658–666

    Article  CAS  PubMed  Google Scholar 

  32. Khella HW, Bakhet M, Lichner Z, Romaschin AD, Jewett MA, Yousef GM (2013) MicroRNAs in kidney disease: an emerging understanding. Am J Kidney Dis 61:798–808

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Yildiz.

Ethics declarations

Conflict of interest

Duygu Ozkorucu, Nuran Cetin, Nadide Melike Sav and Bilal Yildiz declare that they have no conflict of interest.

Human and animal rights

All applicable international, national and institutional guidelines for the care and use of animals were followed. All animal experiments were approved by the Committee for Animal Experiments of the Eskisehir Osmangazi University (Number: 32/186-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkorucu, D., Cetin, N., Sav, N.M. et al. Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome. Int Urol Nephrol 48, 1187–1196 (2016). https://doi.org/10.1007/s11255-016-1249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1249-4

Keywords

Navigation