Skip to main content

Advertisement

Log in

Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) has exhibited huge application value in many fields including chemical synthesis, medicine, environmental remediation, and fuel cells. Traditional anthraquinone method for H2O2 commercial production has emerged the drawbacks of toxicity, H2 consumption and high energy input. Photocatalytic production of H2O2, which only requires water, oxygen, solar light and catalyst, is a novel and green technique, and potentially becomes one of the substitutes for anthraquinone method. Herein, we comprehensively review the research progress in the reported semiconductor catalysts, their modification strategies, as well as the related photocatalysis systems and mechanisms for the light driven H2O2 production. In detail, the photocatalysts are introduced from different families including ZnO, g-C3N4, TiO2, metal complexes, metal sulfides, Bi containing semiconductors, and carbon materials. In the meantime, their modification strategies are systematically evaluated aiming at the improvement in the structures and the photoelectrical properties of semiconductors, as well as their effective activation of molecular O2, and inhibition of H2O2 decomposition. Finally, this review is concluded with a brief summary and outlook, and the major challenges for the development of photocatalytic H2O2 production over the emerging semiconductor photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sato K, Aoki M, Noyori R (1998) A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647

    PubMed  CAS  Google Scholar 

  2. Niwa S-i, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F (2002) A one-step conversion of benzene to phenol with a palladium membrane. Science 295:105–107

    CAS  Google Scholar 

  3. Shaegh SAM, Nguyen N-T, Ehteshamiab SMM, Chan SH (2012) A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ Sci 5:8225–8228

    Google Scholar 

  4. Fukuzumi S (2017) Production of liquid solar fuels and their use in fuel cells. Joule 1:689–738

    CAS  Google Scholar 

  5. Fukuzumi S (2016) Artificial photosynthesis for production of hydrogen peroxide and its fuel cells. Biochim Biophys Acta 1857:604–611

    PubMed  CAS  Google Scholar 

  6. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984

    CAS  Google Scholar 

  7. Hou H, Zeng X, Zhang X (2019) Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angew Chem Int Ed. https://doi.org/10.1002/anie.201911609

    Article  Google Scholar 

  8. Sheldon RA, Arends IWCE (2004) Organocatalytic oxidations mediated by nitroxyl radicals. Adv Synth Catal 346:1051–1071

    CAS  Google Scholar 

  9. Foller PC, Bombard RT (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J Appl Electrochem 25:613–627

    CAS  Google Scholar 

  10. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J Catal 236:69–79

    CAS  Google Scholar 

  11. Song H, Li G, Wang X, Chen Y (2011) Characterization and catalytic performance of Au/Ti-HMS for direct generation of H2O2 and in situ-H2O2-ODS from H2 and O2: an in situ-reduction synthesis and a recycle study of catalyst. Microporous Mesoporous Mat 139:104–109

    CAS  Google Scholar 

  12. Edwards JK, Solsona B, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323:1037–1041

    PubMed  CAS  Google Scholar 

  13. Edwards JK, Pritchard J, Piccinini M, Shaw G, He Q, Carley AF, Kiely CJ, Hutchings GJ (2012) The effect of heat treatment on the performance and structure of carbon-supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. J Catal 292:227–238

    CAS  Google Scholar 

  14. Henkel H, Weber W (Henkel & CIE) (1914) US1108752 [Chem. Abstr. 1914, 8, 23927].

  15. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B 190:26–35

    CAS  Google Scholar 

  16. Baur E, Neuweiler C (1927) Photolytic formation of hydrogenperoxide. Helv. Chim Acta 10:901–907

    CAS  Google Scholar 

  17. Yang L, Dong G, Jacobs DL, Wang Y, Zang L, Wang C (2017) Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J Catal 352:274–281

    CAS  Google Scholar 

  18. Zhu Z, Pan H, Murugananthan M, Gong J, Zhang Y (2018) Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl Catal B 232:19–25

    CAS  Google Scholar 

  19. Hou W-C, Wang Y-S (2017) Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight. ACS Sustain Chem Eng 5:2994–3001

    CAS  Google Scholar 

  20. Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal 4:774–780

    CAS  Google Scholar 

  21. Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed 53:13454–13459

    CAS  Google Scholar 

  22. Zhao S, Zhao X, Zhang H, Li J, Zhu Y (2017) Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy 35:405–414

    CAS  Google Scholar 

  23. Hu S, Qu X, Li P, Wang F, Li Q, Song L, Zhao Y, Kang X (2018) Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites. Chem Eng J 334:410–418

    CAS  Google Scholar 

  24. Kofuji Y, Ohkita S, Shiraishi Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2016) Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal 6:7021–7029

    CAS  Google Scholar 

  25. Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2015) Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 5:3058–3066

    CAS  Google Scholar 

  26. Zhao S, Guo T, Li X, Xue T, Yang B, Zhao X (2018) Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl Catal B 224:725–732

    CAS  Google Scholar 

  27. Kim S, Moon G-h, Kim H, Mun Y, Zhang P, Lee J, Choi W (2018) Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. J Catal 357:51–58

    Google Scholar 

  28. Kormann C, Bahnemann DW, Hoffmann MR (1988) Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Envlron Sci Technol 22:798–806

    CAS  Google Scholar 

  29. Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal 2:599–603

    CAS  Google Scholar 

  30. Shiraishi Y, Kanazawa S, Tsukamoto D, Shiro A, Sugano Y, Hirai T (2013) Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal 3:2222–2227

    CAS  Google Scholar 

  31. Moon G-h, Kim W, Bokare AD, Sung N-e, Choi W (2014) Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ Sci 7:4023–4028

    CAS  Google Scholar 

  32. Bandara J, Udawatta CPK, Rajapakse CSK (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4:857–861

    PubMed  CAS  Google Scholar 

  33. Maurino V, Minero C, Mariella G, Pelizzetti E (2005) Sustained production of H2O2 on irradiated TiO2-fluoride systems. Chem Commun 20:2627–2629

    Google Scholar 

  34. Thakur S, Kshetri T, Kim NH, Lee JH (2017) Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. J Catal 345:78–86

    CAS  Google Scholar 

  35. Kim H-I, Kwon OS, Kim S, Choi W, Kim J-H (2016) Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ Sci 9:1063–1073

    CAS  Google Scholar 

  36. Zhuang H, Yang L, Xu J, Li F, Zhang Z, Lin H, Long J, Wang X (2015) Robust photocatalytic H2O2 production by octahedral Cd3(C3N3S3)2 coordination polymer under visible light. Sci Rep 5:16947

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu J, Chen Z, Zhang H, Lin G, Lin H, Wang X, Long J (2017) Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light. Sci Bull 62:610–618

    CAS  Google Scholar 

  38. Song H, Wei L, Chen C, Wen C, Han F (2019) Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. J Catal 376:198–208

    CAS  Google Scholar 

  39. Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T (2016) Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal 6:4976–4982

    CAS  Google Scholar 

  40. Isaka Y, Oyama K, Yamada Y, Suenobu T, Fukuzumi S (2016) Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal Sci Technol 6:681–684

    CAS  Google Scholar 

  41. Mase K, Yoneda M, Yamada Y, Fukuzumi S (2016) Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt(II) chlorin complex. ACS Energy Lett 1:913–919

    CAS  Google Scholar 

  42. Kato S, Jung J, Suenobua T, Fukuzumi S (2013) Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ Sci 6:3756–3764

    CAS  Google Scholar 

  43. Isaka Y, Kato S, Hong D, Suenobu T, Yamada Y, Fukuzumi S (2015) Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. J Mater Chem A 3:12404–12412

    CAS  Google Scholar 

  44. Mase K, Ohkubo K, Fukuzumi S (2015) Much enhanced catalytic reactivity of cobalt chlorin derivatives on two-electron reduction of dioxygen to produce hydrogen peroxide. Inorg Chem 54:1808–1815

    PubMed  CAS  Google Scholar 

  45. Yamada Y, Nomura A, Miyahigashia T, Fukuzumi S (2012) Photocatalytic production of hydrogen peroxide by two-electron reduction of dioxygen with carbon-neutral oxalate using a 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst. Chem Commun 48:8329–8331

    CAS  Google Scholar 

  46. Yamada Y, Nomura A, Miyahigashi T, Ohkubo K, Fukuzumi S (2013) Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen. J Phys Chem A 117:3751–3760

    PubMed  CAS  Google Scholar 

  47. Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed 53:1–7

    Google Scholar 

  48. Ou H, Yang P, Lin L, Anpo M, Wang X (2017) Carbon nitride aerogels for the photoredox conversion of water. Angew Chem Int Ed 56:10905–10910

    CAS  Google Scholar 

  49. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible lightirradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B 190:26–35

    CAS  Google Scholar 

  50. Lu N, Liu N, Hui Y, Shang K, Jiang N, Li J, Yan W (2020) Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere 241:124927

    PubMed  CAS  Google Scholar 

  51. Moon G-h, Fujitsuka M, Kim S, Majima T, Wang X, Choi W (2017) Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal 7:2886–2895

    CAS  Google Scholar 

  52. Tian J, Wu T, Wang D, Pei Y, Qiao M, Zong B (2019) One-pot synthesis of potassium and phosphorus-doped carbon nitride catalyst derived from urea for highly efficient visible light-driven hydrogen peroxide production. Catal Today 330:171–178

    CAS  Google Scholar 

  53. Xue F, Si Y, Wang M, Liu M, Guo L (2019) Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 62:823–831

    CAS  Google Scholar 

  54. Teranishi M, Naya S-i, Tada H (2010) In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J Am Chem Soc 132:7850–7851

    PubMed  CAS  Google Scholar 

  55. Zuo G, Liu S, Wang L, Song H, Zong P, Hou W, Li B, Guo Z, Meng X, Du Y, Wang T, Roye VAL (2019) Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catal Commun 123:69–72

    CAS  Google Scholar 

  56. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W (2019) Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal B 245:87–99

    CAS  Google Scholar 

  57. Li H, Pang S, Feng X, Müllen K, Bubeck C (2010) Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formatio. Chem Commun 46:6243–6245

    CAS  Google Scholar 

  58. Ma H, Li C, Yin J, Pu X, Zhang D, Su C, Wang X, Shao X (2016) Polyoxometalate enhances the photocatalytic performance of polyaniline/SnO2 composites. Mater Lett 168:103–106

    CAS  Google Scholar 

  59. Zhao S, Zhao X (2019) Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl Catal B 250:408–418

    CAS  Google Scholar 

  60. Fu Y, Ca L, Zhang M, Zhu C, Li H, Wang H, Song Y, Huang H, Liu Y, Kang Z (2018) Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv Energy Mater 8:1802525

    Google Scholar 

  61. Wang X, Han Z, Yu L, Liu C, Liu Y, Wu G (2018) Synthesis of full-spectrum-response Cu2(OH)PO4/g-C3N4 photocatalyst with outstanding photocatalytic H2O2 production performance via a "two channel route". ACS Sustain Chem Eng 6:14542–14553

    CAS  Google Scholar 

  62. Yang Y, Zeng Z, Zeng G, Huang D, Xiao R, Zhang C, Zhou C, Xiong W, Wang W, Cheng M, Xue W, Guo H, Tang X, He D (2019) Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B 258:117956

    CAS  Google Scholar 

  63. Haider Z, Cho H-I, Moon G-H, Kim H-I (2019) Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. Catal Today 335:55–64

    CAS  Google Scholar 

  64. Cai R, Kubota Y, Fujishima A (2003) Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J Catal 219:214–218

    CAS  Google Scholar 

  65. Maurino V, Minero C, Pelizzetti E, Mariella G, Arbezzano A, Rubertelli F (2007) Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2. Res Chem Intermed 33:319–332

    CAS  Google Scholar 

  66. Wang L, Cao S, Guo K, Wu Z, Ma Z, Piao L (2019) Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin J Catal 40:470–475

    CAS  Google Scholar 

  67. Chu C, Huang D, Zhu Q, Stavitski E, Spies JA, Pan Z, Mao J, Xin HL, Schmuttenmaer CA, Hu S, Kim J-H (2019) Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production. ACS Catal 9:626–631

    CAS  Google Scholar 

  68. Kim K, Park J, Kim H, Jung GY, Kim M-G (2019) Solid-phase photocatalysts: physical vapor deposition of Au nanoislands on porous TiO2 films for millimolar H2O2 production within a few minutes. ACS Catal 9:9206–9211

    CAS  Google Scholar 

  69. Zheng L, Su H, Zhang J, Walekar LS, Molamahmood HV, Zhou B, Long M, Hua YH (2018) Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl Catal B 239:475–484

    CAS  Google Scholar 

  70. Zheng L, Zhang J, Hu YH, Long M (2019) Enhanced photocatalytic production of H2O2 by nafion coatings on S, N-codoped graphene-quantum-dots-modified TiO2. J Phys Chem C 123:13693–13701

    CAS  Google Scholar 

  71. Ma R, Wang L, Wang H, Liu Z, Xing M, Zhu L, Meng X, Xiao F-S (2019) Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot. Appl Catal B 244:594–603

    CAS  Google Scholar 

  72. Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H (2019) Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew Chem Int Ed 58:5402–5406

    CAS  Google Scholar 

  73. Kawase Y, Isaka Y, Kuwahara Y, Mori K, Yamashita H (2019) Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem Commun 55:6743–6746

    CAS  Google Scholar 

  74. Hayes JA, Schubert DM, Amonette JE, Nachimuthu P, Disselkamp RS (2008) Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer complexes of Zn(II). J Photoch Photobio A 197:245–252

    CAS  Google Scholar 

  75. Hoffman AJ, Carraway ER, Hoffmann MR (1994) Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ Sci Technol 28:776–785

    PubMed  CAS  Google Scholar 

  76. Lu Y, Huang Y, Zhang Y, Huang T, Li H, Cao J-j, Ho W (2019) Effects of H2O2 generation over visible light-responsive Bi/Bi2O2-xCO3 nanosheets on their photocatalytic NOx removal performance. Chem Eng J 363:374–382

    CAS  Google Scholar 

  77. Gogoi S, Karak N (2017) Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett 9:40

    Google Scholar 

Download references

Acknowledgements

This project was supported by Heilongjiang Provincial Natural Science Foundation of China (Grant No. LH2019B023), the China Postdoctoral Science Foundation funded project (Grant No. 2016M601403), and the Scientific Research Project of Harbin Institute of Petroleum (Grant No. HIPJJ201917).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhang or Ji Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Wei, L., Chen, L. et al. Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview. Top Catal 63, 895–912 (2020). https://doi.org/10.1007/s11244-020-01317-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01317-9

Keywords

Navigation