Skip to main content
Log in

Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We study HAADF-STEM analysis of Ag/Al2O3 samples (as-calcined and reduced at 25, 300, 500 and 900 °C). Ag atoms are classified into subnanoclusters (0.3–1 nm), nanoclusters (1–3 nm), nanoparticles (3–10 nm) and polycrystals (>10 nm). The size of Ag increases with the reduction temperature, which is supported by EXAFS analysis. The effect of Ag size on the activity for borrowing-hydrogen and acceptorless dehydrogenative couplings of alcohols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gunanathan C, Milstein D (2013) Science 341:1229712

    Article  Google Scholar 

  2. Fujita K, Yamaguchi R (2005) Synlett 4:560–571

    Google Scholar 

  3. Obora Y (2014) ACS Catal 4:3972–3981

    Article  CAS  Google Scholar 

  4. Shimizu K (2015) Catal Sci Technol 5:1412–1427

    Article  CAS  Google Scholar 

  5. Shimizu K, Sugino K, Satsuma A (2009) Chem Eur J 15:2341–2351

    Article  CAS  Google Scholar 

  6. Shimizu K, Ohshima K, Satsuma A (2009) Chem Eur J 15:9977–9980

    Article  CAS  Google Scholar 

  7. Shimizu K, Sato R, Satsuma A (2009) Angew Chem Int Ed 48:3982–3986

    Article  CAS  Google Scholar 

  8. Shimizu K, Nishimura M, Satsuma A (2009) ChemCatChem 1:497–503

    Article  CAS  Google Scholar 

  9. Shimizu K, Sawabe K, Satsuma A (2009) Catal Sci Technol 1:331–341

    Article  Google Scholar 

  10. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  11. Arve K, Svennerberg K, Klingstedt F, Eränen K, Wallenberg LR, Bovin JO, Čapek L, Murzin DY (2006) J Phys Chem B 110:420–427

    Article  CAS  Google Scholar 

  12. Kannisto H, Arve K, Pingel T, Hellman A, Härelind H, Eränen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644–653

    Article  CAS  Google Scholar 

  13. Shimizu K, Miyamoto Y, Satsuma A (2010) J Catal 270:86–94

    Article  CAS  Google Scholar 

  14. Su DS, Zhang B, Schlögl R (2015) Chem Rev 115:2818–2882

    Article  CAS  Google Scholar 

  15. Sohlberg K, Pennycook TJ, Zhou W, Pennycook SJ (2015) Phys Chem Chem Phys 17:3982–4006

    Article  CAS  Google Scholar 

  16. Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem Res 46:1740–1748

    Article  CAS  Google Scholar 

  17. Zhang B, Zhang W, Su DS (2011) ChemCatChem 3:965–968

    Article  Google Scholar 

  18. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  19. Pennycook SJ, Jesson DE (1991) Ultramicroscope 37:14–37

    Article  Google Scholar 

  20. Boyes ED, Ward MR, Lari L, Gai PL (2013) Ann Phys (Berlin) 525:423–429

    Article  CAS  Google Scholar 

  21. Yamamoto Y, Arai S, Esdaki A, Ohyama J, Satsuma A, Tanaka N (2014) Microscopy 63:209–218

    Article  CAS  Google Scholar 

  22. Batson PE (2008) Microsc Microanal 14:89–97

    Article  CAS  Google Scholar 

  23. Yoshida K, Tominaga T, Hanatani T, Tagami A, Sasaki Y, Yamasaki J, Saitoh K, Tanaka N (2013) Microscope 62:571–582

    Article  CAS  Google Scholar 

  24. Yoshida K, Bright A, Tanaka N (2012) J Electron Microsc 61:99–103

    Article  CAS  Google Scholar 

  25. Yoshida K, Zhang X, Bright AN, Saitoh K, Tanaka N (2013) Nanotechnology 24:065705

    Article  Google Scholar 

  26. Adrian M, Dubochet J, Lepault J, Mcdowall AW (1998) Nature 308:32–36

    Article  Google Scholar 

  27. Sueda S, Yoshida K, Tanaka N (2010) Ultramicroscope 110:1120–1127

    Article  CAS  Google Scholar 

  28. Hernandez-Garrido Yoshida K, Gai PL, Boyes ED, Christensen CH, Midgley PA (2011) Catal Today 160:165–169

    Article  CAS  Google Scholar 

  29. Yoshida K, Makihara M, Tanaka N, Aoyagi S, Nishibori E, Sakata M, Boyes ED, Gai PL (2011) Microsc Microanal 17:264–273

    Article  CAS  Google Scholar 

  30. Yoshida K, Ikuhara YH, Takahashi S, Hirayama T, Saito T, Sueda S, Tanaka N, Gai PL (2009) Nanotechnology 20:315703

    Article  Google Scholar 

  31. Shimizu K, Sugino K, Kato K, Yokota S, Okumura K, Satsuma A (2007) J Phys Chem C 111:1683–1688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aids for Scientific Research B (26289299) from MEXT (Japan), a MEXT program “Elements Strategy Initiative to Form Core Research Center” and a Grant-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” (25106010) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Kon, K. & Shimizu, Ki. Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols. Top Catal 59, 1740–1747 (2016). https://doi.org/10.1007/s11244-016-0695-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0695-7

Keywords

Navigation