Skip to main content
Log in

Procoagulant microparticles are associated with arterial disease in patients with systemic lupus erythematosus

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Microparticles (MPs) have been associated with inflammatory and thrombotic disease. High levels of MPs have been identified in patients with systemic lupus erythematosus (SLE) and associated with cardiovascular disease. We analyzed the procoagulant activity of MPs and its correlation with arteriosclerosis and arterial thrombosis in SLE patients. Eighty-seven patients with SLE were included: 22 (25.3%) with associated antiphospholipid syndrome (APS), 32 (36.8%) without antiphospholipid antibodies (aPL) and 33 (37.9%) with aPL but without APS. Subclinical arteriosclerosis, defined as the presence and number of plaques, was evaluated by ultrasonography of carotid arteries. Thrombotic events were confirmed by objective methods. The procoagulant activity of MPs was determined by a functional assay with annexin V. Subclinical arteriosclerosis was found in 19 (21.8%) patients. Thirteen episodes of arterial thrombosis and eight of venous thrombosis were recorded. The procoagulant activity of MPs was greater in patients with arterial thrombosis (17.28 ± 8.29 nM vs 12.96 ± 7.90 nM, p < 0.05). In patients without arterial thrombosis, greater procoagulant activity of MPs was identified in patients with multiple (≥ 2) carotid plaques (17.26 ± 10.63 nM vs 12.78 ± 7.15 nM, p = 0.04). In the multivariate analysis, the procoagulant activity of MPs was independently associated with multiple (≥ 2) carotid plaques and arterial thrombosis [OR = 1.094 (95%CI 1.010–1.185), p = 0.027 and OR = 1.101 (95%CI 1.025–1.182), p = 0.008; respectively]. In conclusion, the procoagulant activity of MPs is associated with arteriosclerosis burden and arterial thrombosis in patients with SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

Abbreviations

MPs:

Microparticles

NS:

No significant

nM PS eq:

Nanomolar phosphatidylserine equivalent

References

  1. Bertsias G, Ioannidis JPA, Boletis J et al (2008) EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. Ann Rheum Dis 67:195–205. https://doi.org/10.1136/ard.2007.070367

    Article  CAS  PubMed  Google Scholar 

  2. Jiménez S, García-Criado M, Tàssies D et al (2005) Preclinical vascular disease in systemic lupus erythematosus and primary antiphospholipid syndrome. Rheumatology(Oxford) 44:756–761. https://doi.org/10.1093/rheumatology/keh581

    Article  Google Scholar 

  3. Thompson T, Sutton-Tyrrell K, Wildman RP et al (2008) Progression of carotid intima-media thickness and plaque in women with systemic lupus erythematosus. Arthritis Rheum 58:835–842. https://doi.org/10.1002/art.23196

    Article  CAS  PubMed  Google Scholar 

  4. Teixeira V, Tam L-S (2018) Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med 4:262. https://doi.org/10.3389/fmed.2017.00262

    Article  Google Scholar 

  5. Shah PK, Lecis D (2019) Inflammation in atherosclerotic cardiovascular disease. F1000Res. https://doi.org/10.12688/f1000research.18901.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbonell M, Castelblanco E, Valldeperas X et al (2018) Diabetic retinopathy is associated with the presence and burden of subclinical carotid atherosclerosis in type 1 diabetes. Cardiovasc Diabetol 17:66. https://doi.org/10.1186/s12933-018-0706-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiménez S, Tàssies D, Espinosa G et al (2008) Double heterozygosity polymorphisms for platelet glycoproteins Ia/IIa and IIb/IIIa increases arterial thrombosis and arteriosclerosis in patients with the antiphospholipid syndrome or with systemic lupus erythematosus. Ann Rheum Dis 67:835–840. https://doi.org/10.1136/ard.2007.077321

    Article  CAS  PubMed  Google Scholar 

  8. Naqvi TZ, Lee M-S (2014) Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging 7:1025–1038. https://doi.org/10.1016/j.jcmg.2013.11.014

    Article  PubMed  Google Scholar 

  9. Alonso N, Traveset A, Rubinat E et al (2015) Type 2 diabetes-associated carotid plaque burden is increased in patients with retinopathy compared to those without retinopathy. Cardiovasc Diabetol 14:33. https://doi.org/10.1186/s12933-015-0196-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Urowitz MB, Bookman AAM, Koehler BE et al (1976) The bimodal mortality pattern of systemic lupus erythematosus. Am J Med 60:221–225. https://doi.org/10.1016/0002-9343(76)90427-7

    Article  CAS  PubMed  Google Scholar 

  11. Esdaile JM, Abrahamowicz M, Grodzicky T et al (2001) Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 44:2331–2337. https://doi.org/10.1002/1529-0131(200110)44:10<2331:AID-ART395>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  12. Tàssies D, Espinosa G, Muñoz-Rodríguez FJ et al (2000) The 4G/5G polymorphism of the type 1 plasminogen activator inhibitor gene and thrombosis in patients with antiphospholipid syndrome. Arthritis Rheum 43:2349–2358. https://doi.org/10.1002/1529-0131(200010)43:10<2349:AID-ANR24>3.0.CO;2-J

    Article  PubMed  Google Scholar 

  13. Plasín-Rodríguez MA, Rodríguez-Pintó I, Patricio P et al (2018) The H1 haplotype of the endothelial protein C receptor protects against arterial thrombosis in patients with antiphospholipid syndrome. Thromb Res 169:128–134. https://doi.org/10.1016/j.thromres.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  14. Narshi CB, Giles IP, Rahman A (2011) The endothelium: an interface between autoimmunity and atherosclerosis in systemic lupus erythematosus? Lupus 20:5–13. https://doi.org/10.1177/0961203310382429

    Article  CAS  PubMed  Google Scholar 

  15. Schoenfeld SR, Kasturi S, Costenbader KH (2013) The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum 43:77–95. https://doi.org/10.1016/j.semarthrit.2012.12.002

    Article  PubMed  Google Scholar 

  16. Moriya J (2019) Critical roles of inflammation in atherosclerosis. J Cardiol 73:22–27. https://doi.org/10.1016/j.jjcc.2018.05.010

    Article  PubMed  Google Scholar 

  17. Jackson SP, Darbousset R, Schoenwaelder SM (2019) Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133:906–918. https://doi.org/10.1182/blood-2018-11-882993

    Article  CAS  PubMed  Google Scholar 

  18. Beyer C, Pisetsky DS (2010) The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6:21–29. https://doi.org/10.1038/nrrheum.2009.229

    Article  CAS  PubMed  Google Scholar 

  19. Niccolai E, Emmi G, Squatrito D et al (2015) Microparticles: bridging the gap between autoimmunity and thrombosis. Semin Thromb Hemost 41:413–422. https://doi.org/10.1055/s-0035-1549850

    Article  CAS  PubMed  Google Scholar 

  20. Cunningham M, Marks N, Barnado A et al (2014) Are microparticles the missing link between thrombosis and autoimmune diseases? involvement in selected rheumatologic diseases. Semin Thromb Hemost 40:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tushuizen ME, Diamant M, Sturk A, Nieuwland R (2011) Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe? Arterioscler Thromb Vasc Biol 31:4–9. https://doi.org/10.1161/ATVBAHA.109.200998

    Article  CAS  PubMed  Google Scholar 

  22. Voukalis C, Shantsila E, Lip GYH (2019) Microparticles and cardiovascular diseases. Ann Med 51:193–223. https://doi.org/10.1080/07853890.2019.1609076

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rautou PE, Vion AC, Amabile N et al (2011) Microparticles, vascular function, and atherothrombosis. Circ Res 109:593–606. https://doi.org/10.1161/CIRCRESAHA.110.233163

    Article  CAS  PubMed  Google Scholar 

  24. Świtońska M, Słomka A, Sinkiewicz W, Zekanowska E (2015) Tissue-factor-bearing microparticles (MPs-TF) in patients with acute ischaemic stroke: The influence of stroke treatment on MPs-TF generation. Eur J Neurol 22:395–401. https://doi.org/10.1111/ene.12591

    Article  PubMed  Google Scholar 

  25. Thulin Å, Christersson C, Alfredsson J, Siegbahn A (2016) Circulating cell-derived microparticles as biomarkers in cardiovascular disease. Biomark Med 10:1009–1022. https://doi.org/10.2217/bmm-2016-0035

    Article  CAS  PubMed  Google Scholar 

  26. Montoro-García S, Orenes-Piñero E, Marín F et al (2012) Pharmacological modulation of microparticle release: new strategies for the management of atherothrombotic vascular disorders. Curr Pharm Des 18:840–849. https://doi.org/10.2174/138161212799277789

    Article  PubMed  Google Scholar 

  27. Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH (2013) New fundamentals in hemostasis. Physiol Rev 93:327–358. https://doi.org/10.1152/physrev.00016.2011

    Article  CAS  PubMed  Google Scholar 

  28. Pereira J, Alfaro G, Goycoolea M et al (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Thromb Haemost 95:94–99

    Article  CAS  PubMed  Google Scholar 

  29. McCarthy EM, Wilkinson FL, Parker B, Alexander MY (2016) Endothelial microparticles: pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases? Vascul Pharmacol 86:71–76. https://doi.org/10.1016/j.vph.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  30. Sellam J, Proulle V, Jüngel A et al (2009) Increased levels of circulating microparticles in primary Sjögren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 11:R156. https://doi.org/10.1186/ar2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nielsen CT, Østergaard O, Johnsen C et al (2011) Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum 63:3067–3077. https://doi.org/10.1002/art.30499

    Article  PubMed  Google Scholar 

  32. Nielsen CT, Østergaard O, Rekvig OP et al (2015) Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis. Lupus 24:1150–1160. https://doi.org/10.1177/0961203315580146

    Article  CAS  PubMed  Google Scholar 

  33. López P, Rodríguez-Carrio J, Martínez-Zapico A et al (2017) Circulating microparticle subpopulations in systemic lupus erythematosus are affected by disease activity. Int J Cardiol 236:138–144. https://doi.org/10.1016/j.ijcard.2017.02.107

    Article  PubMed  Google Scholar 

  34. Aringer M, Costenbader K, Daikh D et al (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2018-214819

    Article  PubMed  Google Scholar 

  35. Miyakis S, Lockshin MD, Atsumi T et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4:295–306. https://doi.org/10.1111/j.1538-7836.2006.01753.x

    Article  CAS  PubMed  Google Scholar 

  36. Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29:288–291

    PubMed  Google Scholar 

  37. Gladman D, Ginzler E, Goldsmith C et al (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39:363–369. https://doi.org/10.1002/art.1780390303

    Article  CAS  PubMed  Google Scholar 

  38. Pengo V, Tripodi A, Reber G et al (2009) Update of the guidelines for lupus anticoagulant detection. J Thromb Haemost 7:1737–1740. https://doi.org/10.1111/j.1538-7836.2009.03555.x

    Article  CAS  PubMed  Google Scholar 

  39. Martínez-Zamora MA, Tàssies D, Creus M et al (2016) Higher levels of procoagulant microparticles in women with recurrent miscarriage are not associated with antiphospholipid antibodies. Hum Reprod 31:46–52. https://doi.org/10.1093/humrep/dev278

    Article  CAS  PubMed  Google Scholar 

  40. Imahori Y, Mathiesen EB, Leon DA et al (2018) The contribution of obesity to carotid atherosclerotic plaque burden in a general population sample in Norway: the Tromsø Study. Atherosclerosis 273:15–20. https://doi.org/10.1016/j.atherosclerosis.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  41. Chironi G, Simon A, Hugel B et al (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26:2775–2780. https://doi.org/10.1161/01.ATV.0000249639.36915.04

    Article  CAS  PubMed  Google Scholar 

  42. Suades R, Padró T, Alonso R et al (2015) High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thromb Haemost 114:1310–1321. https://doi.org/10.1160/TH15-04-0325

    Article  PubMed  Google Scholar 

  43. Wang B, Cai W, Zhang Z et al (2018) Circulating microparticles in patients after ischemic stroke: a systematic review and meta-analysis. Rev Neurosci. https://doi.org/10.1515/revneuro-2017-0105

    Article  PubMed  Google Scholar 

  44. El-Gamal H, Parray AS, Mir FA et al (2019) Circulating microparticles as biomarkers of stroke: a focus on the value of endothelial- and platelet-derived microparticles. J Cell Physiol 234:16739–16754. https://doi.org/10.1002/jcp.28499

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Cai W, Hu S et al (2017) A meta-analysis of circulating microvesicles in patients with myocardial infarction. Arq Bras Cardiol 109:156–164. https://doi.org/10.5935/abc.20170102

    Article  CAS  PubMed Central  Google Scholar 

  46. Campello E, Spiezia L, Radu CM et al (2014) Evaluation of a procoagulant phospholipid functional assay as a routine test for measuring circulating microparticle activity. Blood Coagul Fibrinolysis 25:534–537. https://doi.org/10.1097/MBC.0000000000000068

    Article  CAS  PubMed  Google Scholar 

  47. Suades R, Padró T, Alonso R et al (2013) Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost 110:366–377. https://doi.org/10.1160/TH13-03-0238

    Article  CAS  PubMed  Google Scholar 

  48. Bulut D, Becker V, Mügge A (2011) Acetylsalicylate reduces endothelial and platelet-derived microparticles in patients with coronary artery disease. Can J Physiol Pharmacol 89:239–244. https://doi.org/10.1139/y11-013

    Article  CAS  PubMed  Google Scholar 

  49. Parker B, Al-Husain A, Pemberton P et al (2014) Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Ann Rheum Dis 73:1144–1150. https://doi.org/10.1136/annrheumdis-2012-203028

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by Grant Nos. FIS 11/00977 and 05/0204 from the “Instituto de Salud Carlos III (ISCIII)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolors Tàssies.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethics approval

The study was approved by the Clinical Research Ethics Committee of the Hospital Clinic de Barcelona (linked to the University of Barcelona), it was performed according to the principles of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plasín-Rodríguez, M.A., Patricio, P., Monteagudo, J. et al. Procoagulant microparticles are associated with arterial disease in patients with systemic lupus erythematosus. J Thromb Thrombolysis 52, 30–41 (2021). https://doi.org/10.1007/s11239-020-02295-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02295-1

Keywords

Navigation