Skip to main content

Advertisement

Log in

AMOF: adaptive multi-objective optimization framework for coverage and topology control in heterogeneous wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose adaptive multi-objective optimization framework based on non-dominated sorting genetic algorithm-II and learning automata (LA) for coverage and topology control in heterogeneous wireless sensor networks. The multi-objective optimization approach of the proposed framework, called MOOCTC (multi-objective optimization coverage and topology control), can simultaneously optimize several conflicting issues such as number of active sensor nodes, coverage rate of the monitoring area and balanced energy consumption while maintaining the network connectivity. This approach incorporates problem-specific knowledge in its operators to find high-quality solutions. In addition, this approach uses LA to dynamically adapt the crossover and mutation rates without any external control to improve the behavior of the optimization algorithm. Simulation results demonstrate the efficiency of the proposed multi-objective optimization approach in terms of lifetime, coverage and connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mármol, F. G., & Pérez, G. M. (2011). Providing trust in wireless sensor networks using a bio-inspired technique. Telecommunications Systems, 46(2), 163–180.

    Article  Google Scholar 

  2. Dargie, W., Xiaojuan, C., & Denko, M. K. (2010). Modelling the energy cost of a fully operational wireless sensor network. Telecommunications Systems, 44(1–2), 3–15.

    Article  Google Scholar 

  3. Lim, J. C., & Bleakley, C. J. (2013). Trading sensing coverage for an extended network lifetime. Telecommunication Systems, 52(4), 2667–2675.

    Article  Google Scholar 

  4. Younis, M., Senturk, I. F., Akkaya, K., Lee, S., & Senel, F. (2014). Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Computer Networks, 58, 254–283.

    Article  Google Scholar 

  5. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2013). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, 52(4), 2489–2502.

    Article  Google Scholar 

  6. Lai, W. K., Fan, C. S., & Shieh, C. S. (2014). Efficient cluster radius and transmission ranges in corona-based wireless sensor networks. KSII Transaction on Internet and Information Systems, 8(4), 1237–1255.

    Article  Google Scholar 

  7. Chen, X., Dai, Z., Li, W., Hu, Y., Wu, J., et al. (2013). ProHet: A probabilistic routing protocol with assured delivery rate in wireless heterogeneous sensor networks. IEEE Transactions on Wireless Communications, 12(4), 1524–1531.

    Article  Google Scholar 

  8. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2005). Integrated coverage and connectivity configuration in wireless sensor networks. ACM Transactions on Sensor Networks, 1(1), 36–72.

    Article  Google Scholar 

  9. Halder, S., & Bit, S. D. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.

    Article  Google Scholar 

  10. Wan, P., Xu, X., & Zhu, W. (2011). Wireless coverage with disparate ranges, In Proceedings of the \(20^{{\rm th}}\) ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), New York, USA.

  11. Zhang, H., & Hou, J. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc and Sensor Wireless Networks, 1(2), 89–124.

    Google Scholar 

  12. Torkestani, J. A. (2013). An adaptive energy-efficient area coverage algorithm for wireless sensor networks. Ad Hoc Networks, 11(1), 1655–1666.

    Article  Google Scholar 

  13. Vales-Alonso, j, Parrado-García, F. J., López-Matencio, P., González-Castaño, F. J., & Alcaraz, J. J. (2013). On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Ad Hoc Networks, 11(3), 846–860.

    Article  Google Scholar 

  14. Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers and Mathematics with Applications, 57(11), 1756–1766.

    Article  Google Scholar 

  15. Zhou, H., Liang, T., Xu, C., & Xie, J. (2012). Multiobjective Coverage Control Strategy for Energy-Efficient Wireless Sensor Networks. International Journal of Distributed Sensor Networks. doi:10.1155/2012/720734.

  16. Misra, S., Kumar, M. P., & Obaidat, M. S. (2011). Connectivity preserving localized coverage algorithm for area monitoring using wireless sensor networks. Computer Communications, 34(2), 1484–1496.

    Article  Google Scholar 

  17. Han, X., Cao, X., Lloyd, E. L., & Shen, C. C. (2008). Deploying directional sensor networks with guaranteed connectivity and coverage. In Proceedings of Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, USA.

  18. Osais, Y. E., Hilaire, M., & Yu, F. (2010). Directional sensor placement with optimal sensing range, field of view and orientation. Mobile Networks and Applications, 15(1), 216–225.

    Article  Google Scholar 

  19. Attea, B. A., Okay, F. Y., Ozdemir, S., & Akcayol, M. A. (2012). Multi-objective evolutionary algorithm based on decomposition for efficient coverage control in mobile sensor networks, In 6th IEEE International Conference on Application of Information and Communication Technologies (AICT), Tbilisi.

  20. Jia, J., Chena, J., Changa, G., Wena, Y., & Songa, J. (2009). Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius. Computers and Mathematics with Applications, 57(1), 1767–1775.

    Article  Google Scholar 

  21. Liu, L., Hu, B., & Li, L. (2010). Energy conservation algorithms for maintaining coverage and connectivity in wireless sensor networks. IET Communication, 4(7), 786–800.

    Article  Google Scholar 

  22. Liu, Y., Suo, L., Sun, D., & Wang, A. (2013). A virtual square grid-based coverage algorithm of redundant node for wireless sensor network. Journal of Network and Computer Applications, 36(2), 811–817.

    Article  Google Scholar 

  23. Khasteh, S. H., Shouraki, S. B., Hajiabdorahim, N., & Dadashnialehi, E. (2012). A new approach for integrated coverage and connectivity in wireless sensor networks. Computer Communications, 36(1), 113–120.

    Article  Google Scholar 

  24. Shafaq, B., Victor, C., Ratan, K., & Kenneth, O. (2011). Pareto-based evolutionary computational approach for wireless sensor placement. Engineering Applications of Artificial Intelligence, 24(3), 409–425.

    Article  Google Scholar 

  25. Abidin, H. Z., Din, N. M., & Jalil, Y. E. (2013). Multi-objective optimization (MOO) approach for sensor node placement in WSN, In IEEE 7th International Conference on Signal Processing and Communication Systems (ICSPCS), Carrara.

  26. Sungn, T. W., & Yang, C. S. (2014). Voronoi-based coverage improvement approach for wireless directional sensor networks. Journal of Network and Computer Applications, 39(1), 202–213.

    Article  Google Scholar 

  27. Sengupta, S., Das, S., Nasir, M. D., Vasilakos, A. V., & Pedrycz, W. (2012). An evolutionary multi-objective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Sybernetics- Part C: Applications and Reviews, 42(6), 1730–1741.

    Article  Google Scholar 

  28. Rizvi, S., Qureshi, H. K., Khayam, S. A., Rakocevic, V., & Rajarajan, M. (2012). A1: An energy efficient topology control algorithm for connected area coverage in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 597–605.

    Article  Google Scholar 

  29. Sengupta, S., Das, S., Nasir, M. D., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.

    Article  Google Scholar 

  30. Martins, F., Carrano, E., Wanner, E., Takahashi, R., & Mateus, G. (2011). A hybrid multi-objective evolutionary approach for improving the performance of wireless sensor networks. IEEE Sensors Journal, 11(3), 545–554.

    Article  Google Scholar 

  31. Yua, J., Denga, X., Yuc, D., Wangd, G., & Gu, X. (2013). CWSC: Connected k-coverage working sets construction algorithm in wireless sensor networks. International Journal of Electronics and Communications, 67(1), 937–946.

    Article  Google Scholar 

  32. Castaño, F., Rossi, A., Sevaux, M., & Velasco, N. (2013). A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints. Computers and Operations Research, 40(1), 220–230.

    Google Scholar 

  33. Rossi, A., Singh, A., & Sevaux, M. (2012). An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges. Computers & Operations Research, 39(12), 3166– 3176.

    Article  Google Scholar 

  34. Misra, S., & Jain, A. (2011). Policy controlled self-configuration in unattended wireless sensor networks. Networks and Computer Applications, 34(5), 1530–1544.

    Article  Google Scholar 

  35. Misra, S., Ojha, T., & Mondal, A. (2014). Game-theoretic Topology Control for Opportunistic Localization in Sparse Underwater Sensor Networks, IEEE Transactions on Mobile Computing (accepted for publication).

  36. Costa, P., Cesana, M., Brambilla, S., & Casartelli, L. (2009). A cooperative approach for topology control in wireless sensor networks. Pervasive and Mobile Computing, 5(5), 526–541.

    Article  Google Scholar 

  37. Liu, Y., Ni, L., & Hu, C. (2012). A generalized probabilistic topology control for wireless sensor networks. IEEE Journal on Selected Areas in Communications, 30(9), 1780–1788.

    Article  Google Scholar 

  38. Gui, J., & Liu, A. (2012). A new distributed topology control algorithm based on optimization of delay and energy in wireless networks. Parallel and Distributed Computing, 72(8), 1032–1044.

    Article  Google Scholar 

  39. Lee, C. Y., Shiu, L. C., Lin, F. T., & Yang, C. S. (2013). Distributed topology control algorithm on broadcasting in wireless sensor network. Network and Computer Applications, 36(4), 1186–1195.

    Article  Google Scholar 

  40. Cuzzocrea, A., Papadimitriou, A., Katsaros, D., & Manolopoulos, Y. (2012). Edge betweenness centrality: A novel algorithm for QoS-based topology control over wireless sensor networks. Network and Computer Applications, 35(4), 1210–1217.

    Article  Google Scholar 

  41. Qureshi, H. K., Rizvi, S., Saleem, M., Khayam, S. A., Rakocevic, V., & Rajarajan, M. (2011). Poly: A reliable and energy efficient topology control protocol for wireless sensor networks. Computer Communications, 34(10), 1235–1242.

    Article  Google Scholar 

  42. Ben-Othmana, J., Bessaoudb, K., Bui, A., & Pilard, L. (2013). Self-stabilizing algorithm for efficient topology control in wireless sensor networks. Journal of Computational Science, 4(4), 199–208.

    Article  Google Scholar 

  43. Xiaoyuan, L., Yanlin, Y., Shaobao, L., & Xinping, G. (2013). Topology control based on optimally rigid graph in wireless sensor networks. Computer Networks, 57(4), 1037–1047.

    Article  Google Scholar 

  44. Deb, K. (2002). Multi-objective optimization using evolutionary algorithms. New York: Wiley. ISBN 047187339.

    Google Scholar 

  45. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(1), 182–197.

    Article  Google Scholar 

  46. Narendra, K. S., & Thathachar, K. S. (1989). Learning automata: An introduction. New York: Printice-Hall.

    Google Scholar 

  47. Narendra, K. S., & Thathachar, M. A. L. (1974). Learning automata: A survey. IEEE Transaction on Systems, Man and Cybernetics SMC, 4(8), 323–334.

    Article  Google Scholar 

  48. Ye, W., Heidemann, J. & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks, In 21th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM (pp. 1567-1576). New York, USA.

  49. Konstantinidis, A., Yang, K., Zhang, Q., & Zeinalipour, D. (2010). A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Computer Networks, 54(1), 960–976.

    Article  Google Scholar 

  50. Jeyadevi, S., Baskar, S., Babulal, C. K., & Iruthayarajan, M. W. (2011). Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Electrical Power and Energy Systems, 33(2), 219–228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahdi Jameii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jameii, S.M., Faez, K. & Dehghan, M. AMOF: adaptive multi-objective optimization framework for coverage and topology control in heterogeneous wireless sensor networks. Telecommun Syst 61, 515–530 (2016). https://doi.org/10.1007/s11235-015-0009-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0009-6

Keywords

Navigation